AIR MEASUREMENT SERVICES, INC

Horizon Test #: W07-039-FRA

Date Tested: April 20, 2004 Report Date: June 8, 2004

Revision Number: 0

ANNUAL EMISSIONS TEST OF LANDFILL GAS FLARE #1 BRADLEY LANDFILL

Permit to Construct No. 370136

Prepared for:

Waste Management Recycling and Disposal Services of California, Inc. 9081 Tujunga Avenue, 2nd Floor Sun Valley, California 91352

Prepared by:

Horizon Air Measurement Services, Inc. 996 Lawrence Drive, Suite 108
Newbury Park, California 91320

Regulatory Agency:

South Coast Air Quality Management District 21865 East Copley Drive Diamond Bar, California 91765

Robert D. Carrier
Project Manager

11/201/

Richard J. Vacherot Technical Director

- A.
And the state of t
SALES CONTRACTOR OF THE SALES
(1) Company of the Co
ALLE MUNICIPAL SE
Acceptable of the control of the con
Secretary of the secret
Bit of the last of
Rechtmond
Exercise constant
Contractive and the contra
Exemple of the second of the s
женения филомента
Enter contract
Romano-money Service-money
Excension grows
and parameters community and the community and t
ATTENDEDING
Extractional desired
Verna consequent

June 8, 2004

Mr. Bruce Matlock Bradley Landfill and Recycling Center 9227 Tujunga Avenue Sun Valley, California 91352

Dear Mr. Matlock:

Please find enclosed three copies of the final report entitled "Annual Emissions Test of Landfill Gas Flare #1."

If you have any questions please call me at (805) 498-8781.

Sincerely,

HORZON AIR MEASUREMENT SERVICES, INC.

Robert D. Carrier Project Manager

LEGICAL COLOR COLO
Accession of the control of the cont
Line seed of the s
ked constraint
FEX.CAS SOCIATES
S. Commence of the commence of
ERINGENSEELES
roce market for the form the f
EDITORIA DE PROPERTORIS EL PROPERTOR
Percentaging groun
EST PATRICULAR PROPERTY CONTRACTOR CONTRACTO
Control to the contro
Excession and the property of
the control of the co
. Communication of the communi
PETENSONANA ESENTECTION
Removement of the Control of the Con
Constitution of the Consti
Entermand

TABLE OF CONTENTS

1.	INTROD	UCTION	Page 1
2.	SUMMA	RY OF RESULTS	Dago 4
			гаде 4
3.	FLARE I	DESCRIPTION AND OPERATION	. Page 6
	3.1	Flare Description	Page 6
	3.2	Sample Location	Page 6
	3.3	Flare Operation During Testing	. Page 6
4.	SAMPLIN	NG/ANALYSES	. Page 8
	4.1	Sample Location	. Page 8
	4.1.1	Flare Exhaust	. Page 8
	4.1.2	Landfill Gas Supply Line	. Page 9
	4.2	Moisture	Page Q
	4.2.1	Inlet - SCAQMD Method 4.1	Page 9
	4.2.2	Outlet - SCAQMD Method 5.1	. Page 9
	4.3	Flow Rate	Page 10
	4.3.1	Inlet - SCAQMD Method 2.3	Page 10
	4.3.2	Outlet - SCAQMD Method 5.1	Page 10
	4.4	Particulate Matter (Outlet) - SCAQMD Method 5.1	Page 10
	4.5	Oxides of Nitrogen, Carbon Monoxide, Carbon Dioxide, Oxygen	
		(Continuous Emissions Monitoring) - SCAQMD Method 100.1	Page 10
	4.6	Hydrogen Sulfide (H_2S), and $C_1 - C_3$ Sulfur Compounds (Inlet)	
	4.5	- SCAQMD Method 307.91 Equivalent	Page 11
	4.7	Speciated Organic Compounds - SCAQMD Rule 1150.1 List	Page 11
	4.7.1	Inlet	Page 11
	4.7.2	Outlet	Page 11
	4.8	Total Non Methane Hydrocarbons, Methane, Carbon	
	401	Dioxide and Carbon Monoxide	Page 12
	4.8.1 4.8.2	Inlet - SCAQMD Method 25.1	Page 12
	4.0.2 1 2 3	Outlet - SCAQMD Method 25.3	Page 12
	4.0.5	Carbon Monoxide	Page 12
5.	RESULTS	DISCUSSION	Page 13
		APPENDIX A - Sampling and Analytical Methods	
		APPENDIX B - Computer Printout of Results	
		APPENDIX C - Laboratory Results	
		APPENDIX D - Field Data Sheets	
		APPENDIX E - Calibration Information	
		APPENDIX F - Strip Chart Data	
		APPENDIX G - Process Data	
		APPENDIX H - Permit to Operate	

	Property (Property)
	Commence of the commence of th
-	Economic and Econo
	Pageson Track
	And the second s
	emonosorated
	Carrie Charles
	PROGRAMMA PARAMETERS OF THE PROGRAMMA
	economic control for the contr
	Research and Proceedings of the Process of the Proc
	Section con the section of the secti
	provincentum, umotime et total
	Posturente est
	February Company (February Company)
	precure a sale en la Constitución de la Constitució
	postoven menosom tim o con emerge
	Proposition of
	Processions and C

1. INTRODUCTION

Under the Bradley Landfill and Recycling Center (BLRC) site specific Rule 1150.1 compliance plan, Waste Management Recycling and Disposal Services of California, Inc. is required to conduct an annual source test on landfill gas Flare #1 located at BLRC (Permit to Construct #370136). Horizon Air Measurement Services, Inc. (Horizon) had been retained for this purpose.

All testing/analytical procedures conformed to those outlined in Horizon Test Plan No. W07-013-TP, which had been previously approved by the South Coast Air Quality Management District (SCAQMD). Horizon completed the source testing on April 20, 2004.

Two samples were taken for each parameter of interest (Table 1-1) with the exception of trace organic compounds and reduced sulfur compounds, for which only one sample per location was collected. The results of the testing program, with respect to Permit limits, are provided in Section 2 - Results Summary.

A brief description of the flare and flare operating conditions during testing is provided in Section 3. Section 4 provides a summary of sampling/analytical procedures utilized. Section 5 provides a more detailed results summary/discussion.

kennemannah National Park the state of the s in the second de contractoral bod entroperated to 150 recommendado de la composição de la comp deconstruction in the second s

Table 1-1
Compounds of Interest - Flare #1
Waste Management - Bradley Landfill
April 20, 2004

Parameter	Location	Method	Number of Samples Per Source
Total Non Methane Hydrocarbons	Inlet	SCAQMD Method 25.1	2
	Outlet	SCAQMD Method 25.3	2
Reduced Sulfur Compounds (C_1-C_3) Including H_2S	Inlet	SCAQMD Method 307.91 Equivalent	1
Speciated Organic Compounds	Inlet	Whole Air/GC-MS (1150 list)	1
	Outlet	Whole Air/GC-MS (1150 list)	1
Particulate Matter	Outlet	SCAQMD Method 5.1	2
Oxides of Nitrogen	Outlet	SCAQMD Method 100.1	2
Carbon Monoxide	Inlet	SCAQMD Method 25.1	2
	Outlet	SCAQMD Method 100.1	2
Oxygen	Inlet	SCAQMD Method 25.1	2
	Outlet	SCAQMD Method 100.1	2
Carbon Dioxide	Inlet	SCAQMD Method 25.1	2
	Outlet	SCAQMD Method 100.1	2
Methane	Inlet	SCAQMD Method 25.1	2
	Outlet	SCAQMD Method 25.3	2
Flow Rate/Temperature	Inlet	SCAQMD Method 2.3	2
	Outlet	SCAQMD Method5.1/Calculated	2
Moisture	Outlet	SCAQMD Method 5.1	2
	Inlet	SCAQMD Method 4.1	2
BTU Content	Inlet	SCAQMD Method 25.1	2

Commission of the Commission o Harmonina Part Calvering MONTH PRINTED Signamanakan kontrantini kontractional Sert mentologi Section 2 Non-section (1)

2. SUMMARY OF RESULTS

The results of the testing program conducted on Flare #1 are provided in Table 2-1. Emission rates of oxides of nitrogen, carbon monoxide, total particulate matter, total non-methane organics and total sulfur compounds (as SO₂) were within PTC 370136 (see Appendix H) limitations.

A more detailed discussion of results is provided in Section 5.

SCHOOL STANS breeze en en en toreston restall Management Anna in the second best secondaries in in FULL TOTAL STATE promotes and p

Table 2-1

Summary of Results

Flare #1

Waste Management - Bradley Landfill

April 20, 2004

Parameter	Measured Emission Rate*	Permitted Emission Rate
Inlet Gas Flow Rate	3858 dscfm	5556 cfm
Oxides of Nitrogen, as NO ₂	2.64 lb/hr 0.027 lb/MMBtu	10.0 lb/hr, 0.06 lb/MMBtu
Total Particulate Matter	1.69 lb/hr	3.0 lb/hr
Carbon Monoxide	21.9 lb/hr	33.3 lb/hr
Total Non Methane Organics, as CH ₄	0.624 lb/hr	1.86 lb/hr
Total Non Methane Organics, as C ₆	2.20 ppm C ₆ @ 3% O ₂	20 ppm C ₆ @ 3% O ₂ (Rule 1150.1)
Total Sulfur Compounds, as SO ₂	3.07 lb/hr	8.44 lb/hr

Measured emission rates shown are the average of two test runs (samples).

Construction of the constr	
Comprehensive Co	
Parameters and Parame	
CHARLES AND	
Emperiorana de la companya del companya de la companya del companya de la companya del la companya de la compan	
Exercises and the second secon	
Employment of the Control of the Con	
REPRESENTATION .	
EXTERNAL CONTROL OF THE CONTROL OF T	
ENERGY MANAGEMENT OF THE PROPERTY OF THE PROPE	
Circumstant Land	
tomoreum to the total of the to	
recommended by the second of t	
The second secon	
puncutanani construirum	
parturescence) Anti-continuers	
Province And Designation of the Control of the Cont	
Reconstruction of the Control of the	
entremonal Parisments	

3. FLARE DESCRIPTION AND OPERATION

3.1 Flare Description

The landfill gas flare is a John Zink enclosed flare consisting of an insulated steel cylinder 60 feet high and 156 inches outside diameter (see Figure 3-1). The flare is equipped with a multijet burner, a propane gas pilot, electric igniter, UV flame sensor, thermocouple with temperature indicator and recorder, automatic shutdown and alarm system, automatic combustion air regulating system, temperature controller and flare arrestor. Landfill gas is supplied by a 200 horsepower (Hp) blower (one blower is standby). Operating landfill gas flow rate is limited, by the Permit, to 5556 cubic feet per minute. Landfill gas flow rate was continuously monitored using an annubar and is recorded digitally by the facility. Flare temperature and condensate injection rate was also continuously monitored by the facility.

Condensate flow rate is limited to five gallons per minute by the Permit.

3.2 <u>Sample Location</u>

Flare exhaust samples were obtained from each of two ports positioned at right angles, located five feet (0.4 diameters) from the top of the flare (144 inches inside diameter) and approximately 55 feet (4.6 diameters) above ground level.

Inlet samples and measured flow rate were obtained from the 14-inch diameter (13.25 inch inside diameter) landfill gas line supplying the flare at a location 144 inches (10.9 diameters) downstream and 93 inches (7.0 diameters) upstream of any flow disturbance.

3.3 Flare Operation During Testing

The following operating conditions were maintained during the emissions testing:

	<u>Kun I</u>	<u>Run 2</u>
Flare Temperature -	1677 °F	1685 °F
Landfill Gas Flow Rate -	3844 scfm	3799 scfm
Condensate Injection Rate -	3.1 gpm	0.0 gpm

Figure 3-1

usus transm Constituted per carcana karamanana lasses messaga haramanan busycanopand intercontration processor and pr Part of the last Economic de la companie de la compan

The condensate injection operated in the normal automatic mode. Flare process data is provided in Appendix G.

			CONTROLLER
			terconstantal te
			Leveronesse proposes in the second se
			Parameter Parame
			(Rifferent account)
			S CONTROL OF THE PROPERTY OF T
			a) (gazzakosatos)
			ма развитите и менения
			SEC SECURIOR
			noctive to
			MANAGEM MANAGEMENT PROPERTY AND
			VIMEI
			Emorement vo
			Accommond to
			Encourant femore
			ensurventural
			enonventural (
			desirence esta de la constitución de la constitució
			Personal Lands of Lan
			. Proposition of the contraction

4. SAMPLING/ANALYSES

The sampling/analytical program had been designed to quantify the parameters of interest outlined in Table 1-1.

4.1 <u>Sample Location</u>

4.1.1 Flare Exhaust

At the flare exhaust 24 sample points (12 per diameter), determined in accordance with Method 1.1, were utilized for the determination of the following compounds:

- particulate matter
- NO_x
- CO
- O₂/CO₂
- flow rate
- moisture

The exact locations of the sampling points are provided in Appendix D, Field Data Sheets. A description of SCAQMD Method 1.1 is provided in Appendix A.

One sample point near the center of the stack was utilized for the collection of the following compounds:

- speciated organic compounds
- total non methane hydrocarbons
- methane

Landing and the state of the st
example and the second and the secon
Anances of the control of the contro
SECONDARIAS AND ACCOUNTS AND AC
Accountable of the control of the co
Parameter of the control of the cont
· ·
AMERICAN AND ASSESSMENT OF THE PROPERTY OF THE
Exercise visual Exercise visua
COLLEGE STATE STAT
poweroustall to be
ропшиница виспериямия
Communication of the Communica
Successional Section of the Commonweal Secti
CONTRACTOR OF THE PROPERTY OF
Account 13 to Sound
Convergence and Convergence an
personal signal de la constante de la constant
Experience of the second of th

4.1.2 <u>Landfill Gas Supply Line</u>

Twelve sample points (six per diameter), determined in accordance with Method 1.1, were used for collection of the following parameter:

• flow rate

The exact locations of the sampling points are provided in Appendix D, Field Data Sheets. A description of SCAQMD Method 1.1 is provided in Appendix A.

A single sample point was utilized for the collection of the following compounds:

- total non methane hydrocarbons
- methane
- CO
- CO₂/O₂
- reduced sulfur compounds
- speciated organic compounds
- BTU content
- moisture

4.2 Moisture

4.2.1 Inlet - SCAQMD Method 4.1

Landfill gas moisture content was determined using SCAQMD Method 4.1. Two, one hour test runs were conducted in conjunction with the outlet particulate and SCAQMD Method 100 testing. A description of SCAQMD Method 4.1 is provided in Appendix A.

e
PRODUCE AND
ALCOSEL IVO COL
ed concentration of
ANA ROMENSEA
Potential Reservations
FOR CONTROL OF STREET
ettenssions
בוביייייייייייייייייייייייייייייייייייי
West Economic Principles
percent of the
paccurate Table
pomenanesop
fazonicoum? in
Percentage of the percentage o
Perotise abouta
my executorescent
PROFESSIONAL PROFE

4.2.2 Outlet - SCAOMD Method 5.1

Moisture content of the flare exhaust was determined using SCAQMD Method 4.1 in conjunction with SCAQMD Method 5.1, as detailed in Appendix A.

4.3 Flow Rate

4.3.1 Inlet - SCAOMD Method 2.3

Landfill gas flow rate was determined using SCAQMD Method 2.3. A description of SCAQMD Method 2.3 is provided in Appendix A.

4.3.2 Outlet - SCAQMD Method 5.1

The landfill flare flow rate was monitored in conjunction with SCAQMD Method 5.1, as detailed in Appendix A. However, since the flare exhaust velocity was below the applicable limit (0.05 in. WG ΔP) of SCAQMD Method 2.1/5.1, the exhaust flow rate was calculated stoichiometrically based upon the landfill gas composition and stack dilution.

4.4 Particulate Matter (Outlet) - SCAQMD Method 5.1

Horizon conducted two, 60-minute test runs on the flare exhaust for particulate matter determination in accordance with SCAQMD Method 5.1 protocol. Twenty-four traverse points were utilized for the collection of particulate matter at the flare exhaust. A description of SCAQMD Method 5.1 is provided in Appendix A. Stack gases were withdrawn through an integral quartz nozzle and probe.

	EXPLANABLE AND
	Prince and the second s
	PARAMETERS OF THE PARAMETERS O
	disconnectated the control of the co
	Concentration
	GENERAL MARKET
	al telephonomorphisms
	esi Escontiformesi
	Sed Exercisional loss
	1904 20000000 1904 1904 1904 1904 1904 1904 19
	titel communication process
	Examination of the party
	encommunity to the processor of the proc
	ENTANCIAL MANAGEMENT OF THE PROPERTY OF THE PR
	вехичиросногой
	PANALAMINANIA AND ELECTROPHEN AND AND AND AND AND AND AND AND AND AN
	entrosteous) entrosteous
	Butterstand

4.5 Oxides of Nitrogen, Carbon Dioxide, Oxygen (Continuous Emissions Monitoring) - SCAQMD Method 100.1

Two, 60-minute test runs were conducted at the flare exhaust. Twenty-four sample points were utilized. All sampling was performed under the guidelines of SCAQMD Method 100.1 as detailed in Appendix A.

4.6 <u>Hydrogen Sulfide (H₂S), and C₁ - C₃ Sulfur Compounds (Inlet) - SCAQMD Method</u> 307.91 Equivalent

Hydrogen sulfide and C_1 - C_3 sulfur compound samples were collected at the inlet of the flare using the Tedlar bag collection system depicted in Appendix A. All system components coming in contact with the landfill gas were Teflon.

Hydrogen sulfide and C_1 - C_3 sulfur compounds were analyzed using a Method 307.91 equivalent by AtmAA, Inc. Equivalency had been formally granted by SCAQMD to AtmAA, Inc. for this Method.

4.7 Speciated Organic Compounds - SCAOMD Rule 1150.1 List

4.7.1 Inlet

Speciated organic compounds were collected at the flare inlet of the landfill gas using the Tedlar bag collection system depicted in Appendix A. All system components coming in contact with the landfill gas were Teflon or stainless steel. Speciated organic compounds (SCAQMD Rule 1150.1 list) were identified and quantified using GC/MS analytical procedures.

4.7.2 Outlet

Speciated organic compound samples were collected in conjunction with the particulate/CEM testing at the outlet using the Tedlar bag method depicted in Appendix A. Each sample was then analyzed for speciated organic compounds (SCAQMD Rule 1150.1 list) using GC/MS procedures.

				THE PROPERTY OF THE PROPERTY O
				Economic Company
				power and a second
-				Investration in
1				STATE STATE OF THE
				Processorist (control of the control
				Reservation in the second
				Perconnection
•				(STATEMENT COMPANY)
				Postocicus guid
				A Westerman
				Assumo contra DASS
				Recommendation of the Control of the
				pauceanoma
				prosentation real
				poweroconney turismost
				Economical Economica Economical Economical Economical Economical Economical E
				Processors reserved
				Section (

4.8 Total Non Methane Hydrocarbons, Methane, Carbon Dioxide and Carbon Monoxide

4.8.1 Inlet - SCAQMD Method 25.1

Total non methane hydrocarbons, methane, CO_2 and CO concentration were determined at the flare inlet from duplicate samples using SCAQMD Method 25.1. A description of SCAQMD Method 25.1 is provided in Appendix A.

4.8.2 Outlet - SCAQMD Method 25.3

Duplicate samples were obtained for total non methane hydrocarbon and methane concentration determination using SCAQMD Method 25.3. A description of SCAQMD Method 25.3 is provided in Appendix A.

4.8.3 Carbon Monoxide

Carbon monoxide concentration was determined at the exhaust location from analysis of samples gathered in Tedlar bags using South Coast Air Quality Management District Method 10.1.

				ANNOUNT COLUMN
				Experience and a second
-				Generalisan se
				Harman Manager
				kannananan (
				i in control in the c
				Communication of the communica
				E pomor i second
				Parkuntuman
				in the second se
				Section and section (1)
				Economic Control of
				kominimental
				r. Section of the sec
				en penandentuap
				pathone interests
				BED BERTHROWN
				Nood Communications of the Communication of the Com
				Serve
				1.1

5. RESULTS DISCUSSION

Detailed results of the criteria testing conducted on Flare #1 on April 20, 2004 are presented in Table 5-1. Speciated organic compound destruction efficiencies and emission rates are provided in Table 5-2. Since the flare exhaust velocity was below the applicable range $(>0.05 \,\Delta\text{P})$ inches water gauge) of SCAQMD Method 2.1, the flare exhaust flow rate for each test run was calculated stoichiometrically based upon the composition of the landfill gas and the exhaust stack dilution. Oxide of sulfur emission rate was calculated based upon the landfill gas total sulfur compound concentration and flow rate (see Appendix B).

Test Critique

No sampling or analytical problems or Method deviations were encountered during any phase of the test program, with the following exception:

During the test program, carbon monoxide concentrations exceeded the scale (100 ppm) of the SCAQMD Method 100.1 analyzer. As the next available scale (1000 ppm CO) could not necessarily demonstrate compliance (at the minimum reportable 20% of instrument scale), integrated samples for CO were gathered in Tedlar bags for analysis by SCAQMD Method 10.1.

. Any sycontess losenne and

Table 5-1
Summary of Results
Waste Management - Bradley Landfill
Flare #1
April 20, 2004

Run Number	L	ANDFILL	GAS	FLARE EXHAUST				
Run Number	1	2	Avg.	I	2	Avg.		
STACK GAS CHARACTERISTI	CS							
Temperature, degrees F	165	158	162	1527	1520	1524		
Moisture, %	6.4	7.3	6.8	9,4	7.9	8.7		
Flow Rate, acfm	4899	5096	4997	7.4	1.5	0.7		
Flow Rate, dscfm	3789	3928	3858	41474	* 42817	* 42146	*	
Fixed Gases			5050	717/7	42017	42140	*	
Oxygen, %	1.59	-	1.59	12.97	12.94	12.95		
Carbon Dioxide, %	36.15	_	36.15	6.92	6.99	6.95		
Methane, %	41.75	-	41.75	0.00	0.00	0.93		
BTU Value, Btu/scf	422	-	422	-	0.00	-		
EMISSIONS								
Oxides of Nitrogen								
ppm	_	_	_	10.3	7.0	0.5		
ppm @ 3 % O2	_	_	_	23.3	7.0 15.7	8.7		
lb/hr	_	_	_	3.12		19.5		
lb/MMBtu	_	_	-		2.17	2.64		
Carbon Monoxide		-	-	0.033	0.022	0.027		
ppm	_	_		119	116	1.70		
ppm @3 % O2	_	_	_	269	116 261	118		
lb/hr	_	_	-	21.8		265		
lb/MMBtu	_	_	-		22.0	21.9		
Total Particulate Matter		_	-	0.228	0.222	0.225		
gr/dscf	_	_	_	0.00570	0.00000			
lb/hr	_		-	0.00569	0.00368	0.00469		
Total Non-Methane Hydrocarbons	_	-	-	2.02	1.35	1.69		
(Reactive Organic Compounds)								
ppm, as Methane	12027	_	12027	- 0.4				
lb/lır, as Methane	117.3			5.86	-	5.86		
Sulfur Compounds	117.3	-	117.3	0.624	-	0.624		
Hydrogen Sulfide, ppm	68.1		68.1	0.70				
Total Sulfur, ppm as H2S	78.4	_	68.1 78.4	0.50	-	0.50		
Oxides of Sulfur**	70.4	-	/8.4	-	-	-		
lb/hr	-	-	-	3.07	-	3.07		

^{*} Flow Rate calculated stoichiometrically

^{**} Calculated from sulfur balance

	dance we come at
	Personant Company of the Company of
	area constants
	Management of the last of the
	Manage Transport
	i de la companya de l
	in the second
· · · · · · · · · · · · · · · · · · ·	Estatus constant
	Management and
	kedessystemsk
	and consequently and the second
	Secretary second
	fiverprocessor investmental
	law managaran
	ingerencemental

	Economic Const
	processors command
	Protessorous vol. 7

Table 5-2 Trace Organic Species Destruction Efficiency Results Waste Management - Bradley Landfill Flare #1 April 20, 2004

	Inlet			 Outlet				-		
Species	Concentration (ppb)		Emission Rate (lb/hr)	 Concentration (ppb)			Emission Rate (lb/hr)		Destruction Efficiency (%)	
Hydrogen Sulfide		68100		1.42E+00	<	500	<	1.14E-01	>	91.98
Benzene		2720		1.29E-01	<	0.2	<	1.04E-04	>	99.92
Benzychloride	<	40	<	3.10E-03	<	0.8	<	6.77E-04		NA
Chlorobenzene		152		1.05E-02	<	0.2	<	1.51E-04	>	98.56
Dichlorobenzenes		2120		1.90E-01	<	1.1	<	1.08E-03	>	99.43
1,1-dichloroethane		459		2.77E-02	<	0.2	<	1.32E-04	>	99.52
1,2-dichloroethane		96		5.77E-03	<	0.2	<	1.32E-04	>	97.71
1,1-dichloroethylene		64.9		3.84E-03	<	0.2	<	1.29E-04	>	96.63
Dichloromethane		1840		9.54E-02		1.04		5.89E-04		99.38
1,2-dibromoethane	<	30	<	3.44E-03	<	0.2	<	2.50E-04		NA
Perchloroethene		3160		4.57E-01	<	0.1	<	3.16E-04	>	99.93
Carbon tetrachloride	<	30	<	2.82E-03	<	0.1	<	1.03E-04		NA
Toluene		45600		2.56E+00		1.27		7.78E-04		99.97
1,1,1-trichloroethane		20.8		1.69E-03	<	0.1	<	8.86E-05	>	94.75
Trichloroethene		1160		9.27E-02	<	0.1	<	8.73E-05	. >	99.91
Chloroform	<	20	<	1.45E-03	<	0.1	<	7.93E-05		NA
Vinyl Chloride		278		1.06E-02	<	0.2	<	4.16E-05	>	99.61
m xylenes		28200		1.82E+00	<	0.2	<	1.41E-04	>	99.99
o+p xylene		3900		2.52E-01		0.80		5.65E-04		99.78
TNMHC	:	12026890)	1.17E+02		5855		6.24E-01		99.47

Note: All values preceded by "<" are below the detection limit - reported values are detection limit values. NA--Not applicable: Destruction efficiency cannot be calculated since both inlet and outlet values are below the detection limit.

Professional the second of Anton months Fr. a. Service APPENDIX A - Sampling and Analytical Methods

Stack Gas Velocity and Volumetric Flow Rate From Small Stacks or Ducts

Applicable for Methods:

SCAQMD Method 2.3

Principle:

The average gas velocity in a stack gas is determined from the gas density and from measurement of the average velocity head with a standard pitot tube.

Sampling Procedure:

The velocity head and temperature is measured at the traverse points specified by SCAQMD Method 1.2. The static pressure in the stack and the atmospheric pressure is determined. The stack gas molecular weight is determined from independent measurements of O_2 , CO_2 and O_2 concentrations.

Sample Recovery: and Analyses:

The stack gas velocity is determined from the measured average velocity head, the measured dry concentrations of O_2 and CO_2 and the measured concentration of H_2O . The velocity is determined from the following set of equations:

Where,

 ΔP = velocity head, inches in H₂O

Ts = gas/temperature, degrees R

Ps = absolute static pressure

Mwd = dry molecular weight

Mw = molecular weight

Cp = pitot flow coefficient

Dry molecular weight of stack gas

$$Mwd = 0.44 \ (\%CO_2) + 0.32 \ (\%O_2) + 0.28 \ (\%N_2 + \%CO)$$

Molecular weight of stack gas, wet basis

HORIZON AIR MEASUREMENT SERVICES, INC.

$$M_w = (M_{wd} \times M_d) + 18 (1 - M_d)$$

Where,
$$M_d = \frac{100 - Bws}{100}$$

Stack gas velocity

SCAQMD Method 2.3

$$(V_s)$$
 avg.=(5130) $C_p \times \sqrt{\Delta}P$ avg. $\times \sqrt{T_s} \times (\frac{1}{P_s \times M_w})^{1/2}$

Determination of Moisture in Stack Gases

Applicable for Methods:

EPA Method 4, ARB 1-4, SCAQMD Method 4.1

Principle:

A gas sample is extracted at a constant rate from the source; moisture is removed from the stream and determined either volumetrically or gravimetrically.

Sampling Procedure:

Set up train as shown in the following figure. Sample is drawn at a constant rate through a sufficiently heated probe. The probe is connected to the impinger train by Teflon or glass tubing. The train consists of two greenburg smith impinger (SCAQMD 4.1) or one modified and 1 greenburg smith impinger (CARB & EPA) each containing 100 ml of water, an empty impinger as a knock-out and an impinger containing silica gel to protect the pump from moisture.

Sample Recovery: and Analyses:

Following testing, moisture content is determined gravimetrically or volumetrically from initial and final impinger contents weights or volume.

Determination of Particulate Matter Emissions From Stationary Sources Using a Wet Impingement Train

Reference:

SCAQMD Method 5.1

Principle:

Stack gas is withdrawn isokinetically from the source through a sample train. Particulate matter is collected in impingers containing deionized water and on a back-up filter. The impingers are contained in an ice bath to maintain a sampled gas temperature of approximately 15° C (60° F). The filter is not heated.

Sampling Procedure:

The sampling train is shown in the figure below. The sample is drawn isokinetically through a glass or quartz probe (hi-temp). The probe is connected to an impinger train by Teflon tubing. The train consists of two Greenburg-Smith impingers which contain 100 ml of DI water; an empty impinger as a knock-out; and an impinger containing silica gel to protect the pump from moisture. Sample is withdrawn isokinetically from each predetermined sample point (determined using SCAQMD Method 1.1) through the sample train, which is followed by a vacuum line, a pump, a dry gas meter and a calibrated orifice.

- 1. Temperature Sensor
- . Nozzle
- Glass Lined Stainless Steel Probe
 S-type Pitot Tube
- 5. Stack Wall
- Temperature Sensor Meter
 Pitot Tube Inclined Manageter
- 8. Impinger with 100 ml H₂O
- 9. Empty Bubbler
- 10. Bubbler with Silica Gel
- ll. Ice Sath
- l2. Filter
- 13. Sealed Pump (Leak Free)
- 14. Filter for Pump
- 15. Metering Valve
- 16. Vacuum Gauge 17. By-pass Valve
- 18. Temperature Compensated
 - Dry Gas Meter
- 9. Orifice

Sample Recovery:

The moisture content is determined either gravimetrically or volumetrically from initial and final impinger weights or volume. Then the filter, probe/impinger rinse (including nozzle rinse, liner rinse, impinger contents and rinses) and silica gel are recovered into Containers #1, #2 and #3, respectively.

Analytical Procedure:

The aqueous sample is filtered through a tared fiberglass filter. An organic extraction is performed on the resulting solution using methylene chloride. Both the extraction filter and sample train filter are desiccated then measured gravimetrically. The organic extract and aqueous catch are evaporated, desiccated and measured gravimetrically.

If significant levels of sulfur compounds are present in the stack, each sample fraction is analyzed by acid-base titration for acid sulfate content and by barium-thorin titration for sulfate content.

Carbon Monoxide by SCAQMD Micro Total Carbon Analyses

Reference:

SCAQMD Method 10.1 (Tedlar Bag)

Principle:

A Tedlar bag is filled with flue gas at a constant rate. The bag contents are analyzed by total combustion analyses/flame ionization detection for carbon monoxide.

Sampling Procedure:

A gas sample is collected by evacuating the canister, see figure, at a constant rate over each test run using a rotameter/needle valve and a diaphragm pump. This causes the Tedlar bag to fill with stack gas at a constant rate while maintaining sample integrity.

Prior to each sampling run, the evacuated canister (containing the Tedlar bag) is leak checked at 2" Hg vacuum. The sample train upstream of the Tedlar bag is then purged with stack gas. At the conclusion of each test run, each Tedlar bag sample is sealed and stored in an opaque container pending analysis.

Analytical Procedure:

Carbon monoxide concentration from the sample is determined using the SCAQMD Total Combustion Analysis (TCA) procedure.

Determination of Total Gaseous Non-Methane Organic Emissions as Carbon

Reference:

SCAQMD Method 25.1

Principle:

A sample of flue gas is drawn through a condensate trap and into an evacuated 12 liter tank. Volatile organic compounds (VOC), as total gaseous non-methane organics (TGNMO), are determined by combining results from independent analysis of condensate in the traps and gases in the tanks.

Sampling Procedure:

Duplicate gas samples are withdrawn from a source at a constant rate through condensate traps immersed in dry ice followed by evacuated 12 liter (nominal) tanks. Heavy organic components condense as liquids and solids in the condensate traps. Lighter components pass as gases through the traps into the tanks. The combined results from tanks and trap analyses are used to determine a qualitative and quantitative expression of the effluent gas stream. Duplicate sampling is designed into the system to demonstrate precision.

The sampling apparatus is checked for leaks prior to the sampling program by attaching the probe end to an absolute pressure gauge and vacuum pump in series. The sample lines were evacuated to less than 10 mm Hg and the gauge shutoff valve is then closed. The sample lines are deemed to be leak-free if no loss of vacuum occurs as indicated by the vacuum gauge. During sampling the tank pressures are monitored with a 0-30 inch vacuum gauge to ensure integrated sampling.

The final vacuum of each sample is measured using a slack tube manometer. The sample is then pressurized to 800 mm Hg absolute with ultrapure nitrogen. Each sample is then analyzed using the SCAQMD TCA procedure for total non methane hydrocarbons.

Analytical Procedure:

Condensate traps are analyzed by first stripping carbon dioxide (CO_2) from the trap. The organic contents are then removed and oxidized to CO_2 . This CO_2 is quantitatively collected in an evacuated vessel and measured by injection into a flame ionization detection/total combustion analysis (FID/TCA) system.

The organic content of the sample fraction collected in each tank is measured by injecting a portion into the FID/TCA analysis system which uses a two phase gas chromatography (GC) column to separate carbon monoxide (CO), methane (CH₄) and carbon dioxide (CO₂) from each other and from the total gaseous nonmethane organics (TGNMO) which are eluted as backflush. All eluted components are first oxidized to CO_2 by a hopcalite catalyst and then reduced to methane by a nickel catalyst. The resulting methane is detected using the flame ionization detector. A gas standard containing CO, CH_4 , CO_2 and propane, traceable to NBS, is used to calibrated the FID/TCA analysis system.

Determination of Total Gaseous Non-Methane Organic Emissions as Carbon

Reference:

SCAQMD Method 25.3

Principle:

A sample of flue gas is drawn through a condensate trap (mini-impinger) and into an evacuated six liter SUMMA canister. Volatile organic compounds (VOC), as total gaseous non-methane organics (TGNMO), are determined by combining results from independent analysis of condensate in the traps and gases in the SUMMA canisters.

Sampling Procedure:

Duplicate gas samples are withdrawn from a source at a constant rate through condensate traps immersed in an ice bath followed by evacuated six liter (nominal) SUMMA canisters. Heavy organic components condense as liquids and solids in the condensate traps. Lighter components pass as gases through the traps into the canisters. The combined results from canisters and mini-impinger analyses are used to determine a qualitative and quantitative expression of the effluent gas stream. Duplicate sampling is designed into the system to demonstrate precision.

The sampling apparatus is checked for leaks prior to the sampling program by capping the end of the sample probe. The sample flow valve is then opened and then closed to introduce vacuum to the system. The vacuum drop should then cease numerically above 10 in. Hg. A cease in movement of the vacuum gauge for a period of ten minutes indicates an acceptable leak check. When sampling is initiated, the vacuum gauge must indicate a canister vacuum of greater than 28 in. Hg. Immediately after sampling a post-test leak check is performed, followed by a rinse of the PFA line into the condensate trap with 0.5 to 1.0 ml of hydrocarbon free water.

Analytical Procedure:

Condensate traps are analyzed for total organic carbon by liquid injection into an infrared total organic carbon analyzer.

The organic content of the sample fraction collected in each canister is measured by injecting a portion into the FID/TCA analysis system which uses a two phase gas chromatography (GC) column to separate carbon monoxide (CO), methane (CH₄) and carbon dioxide (CO₂) from each other and from the total gaseous non-methane organics (TGNMO) which are eluted as backflush. All eluted components are first oxidized to CO₂ by a hopcalite catalyst and then reduced to methane by a nickel catalyst. The resulting methane is detected using the flame ionization detector. A gas standard containing CO, CH₄, CO₂ and propane, traceable to NBS, is used to calibrated the FID/TCA analysis system.

CONTINUOUS EMISSIONS MONITORING SYSTEM - TRUCK

SCAQMD Method 100.1

The continuous emissions monitoring system consists of a Thermo Electron Model 10AR chemiluminescence NO/NO $_{\rm X}$ analyzer, a Teledyne electro chemical ${\rm O_2}$ analyzer, a Thermo Electron Model 48H CO gas filter correlation analyzer and a Horiba PIR 2000 non dispersive infrared ${\rm CO_2}$ analyzer. All analyzer specifications are provided in Table 1. All concentrations are determined on a dry basis. Concentrations of ${\rm NO_x}$, CO, ${\rm O_2}$ and ${\rm CO_2}$ are continuously recorded on a Linseis 10-inch strip chart recorder and a Strawberry Tree Data Acquisition System (DAS). The extractive monitoring system conforms with the requirements of SCAQMD Method 100.1.

The sampling probe (heated to 250°F), constructed of 1/2 inch-diameter 316 stainless steel, is connected to a condenser with a six foot length of 3/8 inch Teflon line (heated to 250°F). A Nupro stainless steel filter (10 micron) is connected at the tip of the probe and maintained at stack temperature.

The condenser consists of a series of two stainless steel moisture knock-out bottles immersed in an ice water bath. The system is designed to minimize contact between the sample and the condensate. Condensate is continuously removed from the knock-out bottles via a peristaltic pump. The condenser outlet temperature is monitored either manually at 10-minute intervals or on a strip chart recorder/DAS system. The sample exiting the condenser is then transported through a filter, housed in a stainless steel holder, followed by 3/8 inch O.D. Teflon tubing and a Teflon coated (or stainless steel/viton) diaphragm pump to the sample manifold. The sample manifold is constructed of stainless steel tubing and directs the sample through each of five rotameters to the NO_X monitor, O₂ monitor, CO monitor, CO 2 monitor and excess sample exhaust line, respectively. Sample flow through each channel is controlled by a back pressure regulator and by stainless steel needle valves on each rotameter. All components of the sampling system that contact the sample are composed of stainless steel, Teflon or glass.

The calibration system is comprised of two parts: the analyzer calibration and the system bias check. The calibration gases are, at a minimum, certified to $\pm 1\%$ by the manufacturer. Where necessary to comply with the reference method requirements, EPA Protocol 1 gases are used. The cylinders are equipped with pressure regulators which supply the calibration gas to the analyzers at the same pressure and flow rate as the sample. The selection of zero, span or sample gas directed to each analyzer is accomplished by operation of the zero, calibration or sample selector knobs located on the main flow control panel.

For SCAQMD Method 100.1 testing, the following procedures are conducted before and after each series of test runs:

Leak Check:

The leak check is performed by plugging the end of the sampling probe, evacuating the system to at least 20 inches of Hg. The leak check is deemed satisfactory if the system holds 20 inches of Hg vacuum for five minutes with less than one inch Hg loss.

Linearity Check:

The NO_X , CO, CO_2 and O_2 analyzers linearity check is performed by introducing, at a minimum, zero gas, mid range calibration gas (40-60% scale) and high range calibration gas (80-100% scale). Instrument span value is set on each instrument with the mid range gas. The high range calibration gas (80-100% scale) is then introduced into each instrument without any calibration adjustments. Linearity is confirmed, if all values agree with the calibration gas value to within 2% of the range.

Stratification Check:

A stack stratification check is performed (pre-test only) by traversing the stack with the appropriate number of traverse alternately with the reference point (center). If the gas composition is homogenous, <10% variation between any traverse points in the gas stream and the normalized average point, single point gas sampling is performed at the reference point. If stratification exceeds the 10% criteria, then the stack cross section is traversed during sampling.

Horizon Air Measurement Services, Inc.
Continuous Emissions Monitoring
December 5, 2003 - Revision #5 (WPDOCS\METHODS\SC1001TRK.WPD)

System Bias Check:

The system bias check is accomplished by transporting the same gases used to zero and span the analyzers to the sample system as close as practical to the probe inlet. This is accomplished by opening a valve located on the probe, allowing the gas to flow to the probe and back through the moisture knockout and sample line to the analyzers. During this check the system is operated at the normal sampling rate with no adjustments. The system bias check is considered valid if the difference between the gas concentration exhibited by the measurement system which a known concentration gas is introduced at the sampling probe tip and when the sample gas is introduced directly to the analyzer, does not exceed \pm 5% of the analyzer range.

Response Time:

Response time (upscale and downscale) for each analyzer is recorded during the system bias check. Upscale response time is defined as the time it takes the subject analyzer gas to reach 95% of the calibration gas value after introducing the upscale gas to the sample bias calibration system. Downscale response time is defined as the time it takes the subject analyzer to return to zero after the zero gas is introduced into the sample system bias calibration system.

NOx Conversion Efficiency

The NO_x analyzer NO_2 conversion efficiency is determined by injecting a NO_2 gas standard directly into the NO_x analyzer (after initial calibration). The analyzer response must be a least 90% of the NO_2 standard gas value.

NO2 Converter Efficiency (alternate method)

The mid level NO gas standard is directly injected into a clean leak-free Tedlar bag. The bag is then diluted 1:1 with air (20.9 % O₂). The bag is immediately attached to the NQ sample line. The initial NQ concentration is recorded on the strip chart. After at least 30 minutes the Tedlar bag is reattached to the NO_x sample line. Analyzer response must be at 98% of the initial Tedlar bag NO_x value to be acceptable.

In between each sampling run the following procedures are conducted:

Zero and Calibration Drift Check:

Upon the completion of each test run, the zero and calibration drift check is performed by introducing zero and mid range calibration gases to the instruments, with no adjustments (with the exception of flow to instruments) after each test run. The analyzer response must be within \pm 3% of the actual calibration gas value.

Analyzer Calibration:

Upon completion of the drift test, the analyzer calibration is performed by introducing the zero and mid range gases to each analyzer prior to the upcoming test run and adjusting the instrument calibration as necessary.

System Bias Check

(same as above)

A schematic of the sample system and specific information of the analytical equipment is provided in the following pages.

TABLE 1

CONTINUOUS EMISSIONS MONITORING LABORATORY - TRUCK

NO_x CHEMILUMINESCENT ANALYZER -- THERMO ELECTRON MODEL 10 A

Response Time (0-90%)

1.5 sec -- NO mode/1.7 sec -- NO, mode

Zero Drift

Negligible after 1/2 hour warmup

Linearity

± 1% of full scale

Accuracy

Derived from the NO or NO₂

Operating Ranges (ppm)

calibration gas, $\pm 1\%$ of full scale

Output

2.5, 10, 25, 100, 250, 1000, 2500, 10000 0-1 volt

O2 ANALYZER, FUEL TYPE -- TELEDYNE MODEL 326RA

Response Time (0-90%)

60 seconds

Accuracy

± 1% of scale at constant temperature \pm 1% of scale of \pm 5% of reading,

whichever is greater, over the operation

temperature range.

Operating Ranges (%)

0-5, 0-25

Output

0-1 volt

O2 ANALYZER, PARAMAGNETIC -- SERVOMEX MODEL 1400B

Response Time (0-90%)

15 seconds

Accuracy

0.1% oxygen

Linearity

± 1% scale

Operating Ranges (%)

0-25, 0-100

Output

0-1 volt

CO GAS FILTER CORRELATION -- THERMO ELECTRON MODEL 48H

Response Time (0-95%)

1 minute

Zero Drift

+ 0.2 ppm CO

Span Drift

Less than 1% full scale in 24 hours

Linearity

+ 1% full scale, all ranges

Accuracy

 ± 0.1 ppm CO

Operating Ranges (ppm)

50, 100, 250, 500, 1000, 2500, 5000,

10,000, 25,000, 50,000

Output

0-1 volt

Horizon Air Measurement Services, Inc. Continuous Emissions Monitoring December 5, 2003 - Revision #5 (WPDOCS\METHODS\SC1001TRK.WPD)

TABLE 1 (Cont.)

CO, INFRARED GAS ANALYZER -- HORIBA - MODEL PIR 2000

Response Time (0-90%) 5 seconds

Zero Drift \pm 1% of full scale in 24 hours Span Drift \pm 1% of full scale in 24 hours

Linearity $\pm 2\%$ of full scale

Resolution Less than 1% of full scale

Operating Ranges (%) 0-5, 0-15, 0-25

Output 0-1 volt

SO₂ PULSED FLOURESCENT - TECO - MODEL 43C-HL

Response Time 80 seconds Zero Drift $\pm 1\%$

Span Drift \pm 1%Linearity \pm 1%Resolution+ 1%

Operating Ranges 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000

Output 0-10 volt

RATFISCH FID TOTAL HYDROCARBON ANALYZER -- MODEL 55CA

Response Time (0-90%) 5 seconds

Zero Drift \pm 1% full scale in 24 hours Span Drift \pm 1% full scale in 24 hours Linearity \pm 1% full scale - constant

Accuracy $\pm 1\%$ full scale at constant temp.

Operating Ranges (ppm) 10, 100, 1000, 10,000

Output 0 - 10 volts

LINSEIS MODEL L2045 FOUR PEN STRIP CHART RECORDER

Pen Speed up to 120 cm/min

Measuring Response 0-20 volts
Linearity Error 0.25%
Accuracy 0.3%

Zero Suppression Manual (from 1 to 10X full scale)

LINEAR 3 PEN CONTINUOUS -- MODEL 595 STRIP CHART

Pen Response 20 inches/second Measuring Response 1 Mv through 5V

Zero Set Electronically adjustable full scale with 1 full

scale of zero suppression

Accuracy Total limit of error ± 0.5%

Method: NO/NO_x by Continuous Analyzer EPA 7E, EPA 20; CARB 100, BAAQMD ST-13A, SCAQMD 100.1 Applicable Reference Methods: A sample is continuously withdrawn from the flue gas stream, conditioned Principle: and conveyed to the instrument for direct readout of NO or NOx. Analyzer: TECO Model 10AR Measurement Principle: Chemiluminescence Accuracy: 1% of full scale Ranges: 0-2.5, 0-10, 0-25, 0-100, 0-250, 0-1000, 0-2500, 0-10,000 ppm Output: 0-10 V Inferences: Compounds containing nitrogen (other than ammonia) may cause interference. Response Time: 90%, 1.5 seconds (NO mode) and 1.7 seconds (NO $_{\rm X}$ mode) Sampling Procedure: A representative flue gas sample is collected and conditioned using the CEM system described previously. If EPA Method 20 is used, that method's specific procedures for selecting sample points are used. The oxides of nitrogen monitoring instrument is a chemiluminescent nitric Analytical Procedure: oxide analyzer.

the operational basis of the instrument is the chemiluminescent reaction of NO and ozone (O3) to form NO2 in an excited state. Light emission results chemiluminescence is monitored through an optical filter by a high sensitivity photomultiplier tube, the output of which is electronically processed so it is linearly proportional to the NO concentration. The output of the instrument is in ppmV.

When NO2 is expected to be present in the flue gas, a supercooled water dropout flask will be placed in the sample line to avoid loss of NO2. Since NO2 is highly soluble in water, "freezing out" the water will allow the NO2 to reach the analyzers for analysis. The analyzer measures NO only. In the NO_x mode, the gas is passed through a moly converter which converts NO2 to NO and a total NOx measurement is obtained. NO2 is determined as the difference between NO and NO_X. Use of a moly converter instead of a stainless steel converter eliminates NH3 interference; NH3 is converted to NO with a stainless converter, but not with a moly converter.

Oxygen (O2) by Continuous Analyzer

Applicable Reference

Methods:

EPA 3A, EPA 20, CARB 100, BAAQMD ST-14, SCAQMD 100.1

Principle:

A sample is continuously withdrawn from the flue gas stream, conditioned and conveyed to the instrument for direct readout of O_2 concentration.

Analyzer:

Teledyne Model 326R

Measurement Principle:

Electrochemical cell

Ranges:

0-5, 0-25% 0-100%

Accuracy:

1% of full scale

Output:

0-1 V

Interferences:

Halogens and halogenated compounds will cause a positive interference. Acid gases will consume the fuel cell and cause a slow calibration drift.

Response Time:

90% < 60 seconds

Sampling Procedure:

A representative flue gas sample is collected and conditioned using the CEM system described previously. If Method 20 is used, that method's specific procedures for selecting sample points are used. Otherwise, stratification checks are performed at the start of a test program to select single or multiple-point sample locations.

Analytical Procedure:

An electrochemical cell is used to measure O_2 concentration. Oxygen in the flue gas diffuses through a Teflon membrane and is reduced on the surface of the cathode. A corresponding oxidation occurs at the anode internally and an electric current is produced that is proportional to the concentration of oxygen. This current is measured and conditioned by the instrument's electronic circuitry to give an output in percent O_2 by volume.

Method: Carbon Dioxide (CO₂) by Continuous Analyzer Applicable Reference EPA 3A, CARB 100, BAAQMD ST-5, SCAQMD 100.1 Principle: A sample is continuously drawn from the flue gas stream, conditioned and conveyed to the instrument for direct readout of CO₂ concentration. PIR 2000 Analyzer: Measurement Principle: Non-dispersive infrared (NDIR) Accuracy: 1% of full scale Ranges: 0-5, 0-15% Output: 0-1 V Interferences: A possible interference includes water. Since the instrument receives dried sample gas, this interference is not significant. Response Time: 5 seconds Sampling Procedure: A representative flue gas sample is collected and conditioned using the CEM system described previously. Analytical Procedure: Carbon dioxide concentrations are measured by short path length nondispersive infrared analyzers. These instruments measure the differential in infrared energy absorbed from energy beams passed through a reference cell (containing a gas selected to have minimal absorption of infrared energy in the wavelength absorbed by the gas component of interest) and a sample cell through which the sample gas flows continuously. The differential absorption appears as a reading on a scale of 0-100%.

Carbon Monoxide (CO) by NDIR/Gas Filter Correlation

Applicable Reference

Methods:

EPA 6C; CARB 1-100; BAAQMD ST-6, SCAQMD 100.1

Principle:

A sample is continuously drawn from the flue gas stream, conditioned and conveyed to the instrument for direct readout of CO concentration.

Analyzer:

TECO, Model 48H

Measurement Principle:

NDIR/Gas Filter Correlation

Precision:

0.1% ppm

Ranges:

0-50, 0-100, 0-250, 0-500, 0-1000, 0-2500, 0-5000, 0-10000, 0-2500, 0-3,00

ppm

Output:

0-1 V

Interferences:

Negligible interference from water and CO₂

Rise/Fall times (0-95%)

1 minute @ 1 lpm flow, 30 second integration time

exits the sample cell and falls on a solid state IR detector.

Sampling Procedure:

A representative flue gas sample is collected and conditioned using the CEN system described previously. Sample point selection has been described

previously.

Analytical Procedure:

Radiation from an infrared source is chopped and then passed through a gas filter which alternates between CO and N 2 due to rotation of a filter wheel. The radiation then passes through a narrow band-pass filter and a multiple optical pass sample cell where absorption by the sample gas occurs. The IR radiation

Sulfur Dioxide (SO₂) by Pulsed Flourescent

Applicable Reference

Methods:

EPA 10; CARB 1-100; BAAQMD ST-6, SCAQMD 100.1

Principle:

A sample is continuously drawn from the flue gas stream, conditioned and conveyed to the instrument for direct readout of SO_2 concentration.

Analyzer:

TECO, Model 43C-HL

Measurement Principle:

Pulsed flourescense SO_2 analyzer

Precision:

0.1% ppm

Ranges:

5, 10, 20, 50, 100, 200 ppm

Output:

0-10 V

Interferences:

Less than lower detectable limit except for the following: NO <3 ppb, m-xylene <2 ppm, H₂O <2% of reading.

Response Time:

80 seconds

Sampling Procedure:

A representative flue gas sample is collected and conditioned using the CEM system described previously. Sample point selection has been described previously.

Analytical Procedure:

The sample flows into the flourescent chamber, where pulsating UV light excites the SO_2 molecules. The condensing lens focuses the pulsating UV light into the mirror assembly. The mirror assembly contains four selecting mirrors that reflect only the wavelengths which excite SO_2 molecules. As excited SO_2 molecules decay to lower energy states they emit UV light that is proportional to the SO_2 concentration. The PMT (photomultiplier tube) detects UV light emission from decaying SO_2 molecules. The PMT continuously monitors pulsating UV light source and is connected to a circuit that compensates for fluctuating in the light.

Atm AA Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

environmental consultants laboratory services

Tandem Gas Chromatographic/Mass Spectroscopic-Electrolytic Conductivity Detector (GC/MS-ELCD) Method for Determination of Total Sulfur in Gas Samples

AtmAA, Inc. 03-060

3/30/93

This method measures selected reduced sulfur species, including but limited to hydrogen sulfide, carbonyl sulfide, methyl mercaptan, ethyl mercaptan, dimethyl sulfide, carbon disulfide, isopropyl mercaptan, n-propyl mercaptan, and dimethyl disulfide in gaseous sample matrices using gas chromatographic separation and a mass spectrometric and electrolytic conductivity detector (ELCD), where the ELCD measures hydrogen sulfide only. A non-polar methyl silicon capillary gas chromatographic column is used for component separation and selected ion monitoring is used for component quantification. Component quantification is obtained using a multi-component external standard prepared by Scott Specialty Gases. The lower detection limit varies by component but is at least 0.1 ppmv ethyl mercaptan (component of lowest sensitivity) for a 0.31 ml sample volume injection. The upper quantitation limit has not been determined but is at least beyond 80 ppmv dimethyl disulfide, for which response remained linear from 0.1 ppmv to 80 ppmv.

Hydrogen sulfide is measured using an electrolytic conductivity detector operated in the oxidative sulfur mode. A Chromosil 310 column, operated isothermally at 45°C. is used to separate $\rm H_2S$ from other sulfur components. A fixed volume loop injection is used in the analysis for $\rm H_2S$.

Lower Detection Limits (LDL's):

Using a 1 ml injection volume for H₂S by electrolytic conductivity detector and 0.40 ml injection volume for GC/MS measured sulfur compounds, the following LDL's are obtained:

	(ppmv)
Hydrogen sulfide	0.5
Carbonyl sulfide	0.03
Methyl mercaptan	0.03
Ethyl mercaptan	0.04
Dimethyl sulfide	0.02
Carbon disulfide	0.02
i-propyl mercaptan	0.03
n-propyl mercaptan	0.03
Dimethyl disulfide	0.02

Equipment:

A Hewlett-Packard 5890 series II gas chromatograph (GC), Hewlett-Packard 5971A Mass Selective Detector, 486 MS/DOS computer and HP operating software are used for all sulfur species except H₂S. The GC is fitted with a heated 6-port Valco 1/16" line, sample injection valve. All gas transfer lines to the sample loop are fused silica lined Restek tubing. The fixed volume (0.40 ml) sample loop is Teflon. The transfer line from the valve to the GC column is cleaned and treated blank 0.53 mm OD fused silica line with polyimide coating.

 $\rm H_2S$ is measured using a Varian 1400 GC with the Hall oxidative quartz tube furnace and electrolytic cell attached. Nitrogen is used as carrier and oxygen is used as the combustion gas.

Multi-component gaseous standards are prepared by Scott Specialty Gas and are contained in two separate aluminum cylinders and a Scotty IV canister as follows:

Cylinder A (CAL	12250)	Cylinder B (CAL:	3563)
Carbonyl sulfide Ethyl mercaptan Carbon disulfide	13.4 ppmv		12.3 ppmv 22.6 ppmv 20.3 ppmv

Scotty IV (mix 252)

Hydrogen Sulfide 93.8 ppmv

Gas tight clean glass volumetric syringes of 10, 20, & 50 ml capacity, with smooth glass barrel (not sintered glass) are used to make volumetric dilutions of sample or standard.

GC/MS SIM parameters:

Dwell per ion	start time	Ions
Group 1: 75 msec. Group 2: 75 msec. Group 3: 75 msec. Group 4: 75 msec.	8.0 min. 10.0 min. 14.5 min. 19.5 min.	60 47,48,64 47,62,76,78,43,61 79,94,122,142,156, 128

Components monitored:

Group 1: carbonyl sulfide Group 2: methyl mercaptan

Group 3: ethyl mercaptan, dimethyl disulfide, carbon

disulfide, isopropyl mercaptan, n-propyl mercaptan

Group 4: dimethyl sulfide

019

Component	Quantitation ion	Confirmation		
carbonyl sulfide	60		none	
methyl mercaptan	47		48	
ethyl mercaptan	62		47	
dimethyl sulfide	62		47	
carbon disulfide	76		78	
iso-propyl mercapt	an 76		43,47,61	
n-propyl mercaptan		•	43,47,61	
dimethyl disulfide		-	79 [°]	

Sulfur dioxide is analyzed by monitoring mass 64 which is included in Group 2 ions.

Calibration:

Gaseous standards can be analyzed prior to or after a set of samples. Response factors are determined from a single point standard calibration. Multi-point calibrations are performed to verify linearity. Consistency of standard response with continuing calibrations is observed to indicate performance of multi-point calibration.

Samples containing components at less than the stated LDL can be analyzed by cryogenically focusing a measured volume of gaseous sample onto a glass bead filled Teflon loop immersed in liquid argon. The sample is thermally transferred upon injection by immersing the sample loop in near boiling temperature water. The LDL obtained by this technique is calculated as:

 $LDL_{cryo} = (cryo volume/0.40)*LDL_{o.40}$

Acceptable volumes for cryogenic concentration range from 3 to 100 ml. and are determined based on amounts of other components in the sample such as water, carbon dioxide or hydrocarbons.

Procedure:

A volumetric sample of landfill or source collected gas is transferred from a Tedlar^R bag to the 6-port valve injection line using a glass syringe of approximately 10 ml. A Teflon loop of 0.40 ml volume is used to inject the sample. When sample concentrations exceed that of the standard, appropriate volumetric sample dilutions are made using the glass syringes with dry nitrogen diluent. Immediately after sample injection, the GC/MS is started. Standards are analyzed in the same manner as samples. Appropriate component peaks are monitored and integrated after sample analysis data set has been obtained.

Hydrogen sulfide is measured using the electrolytic conductivity detector by a separate direct fixed loop valve injection using heated Teflon loop, transfer lines, and Teflon Chromosil 310 GC column.

A response factor for a standard component is calculated as:

rf = std. amt. / std. area

Sample concentration is calculated using the response factor:

conc. = $rf \times sample area$

At least 10% of samples in a sample set, or minimum of one sample per set are analyzed twice to determine precision. A separate report showing repeat analyses results is included with an analytical report of sulfur component concentrations per each sample set. Repeat analyses must agree within +/- 10% except for component concentrations less than 1 ppmv. A nitrogen blank is analyzed between standards and samples to verify that there is no component carry-over. Samples are analyzed as soon after they are ived as possible, preferably same day and within four hours of

ection. Data is being gathered to determine stability of suffur compounds in Tedlar bag containers in an effort to extend sample holding time. Samples are usually analyzed before standards to prevent carry-over, since most sulfur components measured in landfill gas samples are lower in concentration than those in the standards.

GC/MS Analysis Conditions:

GC conditions: a 30 M \times 0.2 mm, 0.50 um film methyl silicon PONA column from Hewlett-Packard is temperature programmed as follows:

-65 degrees C, hold min. 15 degrees C min. to 220 degrees C, hold 5 min.

Valve oven Temp. 150 degrees C GC/MS transfer line 180 degrees C Carrier gas is helium, pressure regulated at 21 psi.

MS Conditions:

MS calibration is performed periodically prior to performing analyses using PFTBA (perfluoro-tributylamine) as supplied by Hewlett-Packard and as controlled by HP software under the mid-range auto tine program. Solvent delay = 8 min.

Hall Detector/GC Analysis Conditions:

6' x 1/8" Teflon, Chromosil 310 analytical column 45 degrees C, isothermal Valve oven & transfer line Temp. 105 degrees C. Carrier gas is nitrogen, flow rate 18 cc/min. Oxygen oxidation gas, flow rate 18 cc/min. Quartz tube oxidation oven Temp. 650 degrees C.

APPENDIX B - Computer Printout of Results

Facility: Bradley Landfill

Source: Flare #1 Job No.: W07-039 Date: 4/20/2004

TOTAL COMBUSTION ANALYSIS RESULTS

Sample ID Run Number	Inlet 1A	Inlet 1B	Average
Methane in Tank	412000	423000	417500
TNMHC,Tank (Noncond.) TNMHC - Condensables	1040	1240	
TNMHC - Condensables	11049.3	10724.4	
	12089.3	11964.4	
CO Concentration (ppm) CO2 Concentration (ppm)	53.1	52.1	52.6
O2 Concentration (%)	360000	363000	361500
O2 Concentration (%)	1.76	1.42	1.59
Sample Parameters			
Tank Number	С	1	
Trap Number	Ü	Y1	
Sample Tank Volume (I)	12.202	12.051	
Initial Pressure (Torr)	2.5	2.5	
Initial Temperature (deg. K)	292	292	
Final Pressure (mm Hg)	542	560	
Final Temperature (deg. K)	292	292	
Sample Volume (I)	8.70	8.87	
Analysis Pressure (mm Hg)	820	820	
Analysis Temperature (deg. K)	292	292	
, , , , , , , , , , , , , , , , , , , ,		202	
ICV Volume (I)	2.266	2.266	
ICV Final Pressure (mm Hg)	800	800	
ICV Final Temperature (deg. K)	292	292	
CO2 in ICV (ppm)	42400	42000	
TNMHC,Trap (Condensables)	11049	10724	
Stack Total TNMHC	12089	11964	12027

NOTE: All hydrocarbon values are in terms of ppm, v/v, as methane.

SCAQMD Methods 1-4 Flowrate Determination

Source: Flare #1 Job No.: W07-039 Date: 4/20/04					
STANDARD TEMPERATURE	Degrees F	60			
RUN NUMBER	*****	1	2	Average	
CLOCK TIME: INITIAL	****	1600	1751		
CLOCK TIME: FINAL	*****	1700	1851		
AVG. STACK TEMPERATURE	Degrees F	165	158	162	
AVG. SQUARE DELTA P	Inches H20	1.1650	1.2138	1.1894	
BAROMETRIC PRESSURE	Inches HG	29.23	29.23	29.23	
SAMPLING TIME	Minutes	60	60	60	
SAMPLE VOLUME	Cubic Feet	44.815	51.727	48.271	
AVG. METER TEMP.	Degrees F	85.0	83.4	84.2	
AVG. DELTA H	Inches H20	1.50	1.50	1.50	
DGM CALIB. FACTOR [Y]	****	1.0076	1.0076	1.0076	
WATER COLLECTED	Milliliters	61	82	72	
CO 2	Percent	36.2	36.2	36.2	
02	Percent	1.6	1.6	1.6	
CO	Percent				
CH4	Percent	41.8	41.8	41.8	
N2	Percent	20.5	20.5	20.5	
STACK AREA	Square Inches	137.9	137.9	137.9	
STATIC PRESSURE	Inches WG	6.50	4.70	5.60	
PITOT COEFFICIENT	*****	0.99	0.99	0.99	
SAMPLE VOLUME DRY	DSCF	42.25	48.91	45.58	
WATER AT STD.	SCF	2.9	3.9	3.4	
MOISTURE	Percent	6.4	7.3	6.8	
MOLE FRACTION DRY GAS		0.94	0.93	0.93	
MOLECULAR WT.DRY	lb/lb Mole	28.84	28.84	28.84	
EXCESS AIR	Percent	42	42	42	
MOLECULAR WT. WET	lb/lb Mole	28.15	28.04	28.10	
STACK GAS PRESSURE	Inches HG	29.71	29.58	29.64	
STACK VELOCITY	AFPM	5115	5321	5218	
VOLUMETRIC FLOWRATE, DRY STD.	DSCFM	3789	3928	3858	
VOLUMETRIC FLOWRATE, ACTUAL	ACFM	4899	5096	4997	
EMISSION RATES					
SAMPLE A					
TNMHC Concentration, as CH4	ppm	12089		12089	
TNMHC Concentration, as CH4	mg/dscf	231		231	
TNMHC Emission Rate, as CH4	lb/hr	115.8		117.9	
SAMPLE B					
TNMHC Concentration, as CH4	ppm	11964		11964	
TNMHC Concentration, as CH4	mg/dscf	229		229	
TNMHC Emission Rate, as CH4	lb/hr	114.6		116.7	
AVERAGE					
TNMHC Concentration, as CH4	ppm	12027		12027	
TNMHC Concentration, as CH4	mg/dscf	230		230	
TNMHC Emission Rate, as CH4	lb/hr	115.2		117.3	

Facility:

Bradley Landfill

EXPANSION AND F-FACTOR CALC. METHOD

4/20/2004 W07-039 1
Job #:

Fuel temperature Fuel Pressure Fuel Flow Rate Exhaust Outlet O2 Barometric Pressure	12.97	deg. F psi cfm %	Std. Temp	60 deg. F 3789 dscfm
				ı

COMPONENTS	3	MOLE %	HHV btu/ft3	LLV btu/ft3	Exp Factor dscf/scf fuel
Oxygen		1.59			0.016
Nitrogen		20.51			0.205
Carbon Dioxide	:	36.15			0.362
Methane		41.75	421.68	379.67	3.578
Ethane	C2		0.00	0.00	0.000
Propane	C3		0.00	0.00	0.000
Iso-Butane	C4		0.00	0.00	0.000
N-Butane			0.00	0.00	0.000
Iso-Pentane	C5		0.00	0.00	0.000
N-Pentane			0.00	0.00	0.000
Hexane	C6		0.00	0.00	0.000
Heptane	C7		0.00	0.00	0.000
Octane	C8		0.00	0.00	0.000
Nonane	C9		0.00	0.00	3.550
Total		100.00	421.68	379.67	4.16

CALCULATIONS

EXHAUST FLOW RATE, Q = (scfm*Exp Fac)*(20.92(20.92-%O2)

41474 DSCFM

EPA F-Factor = (scf exhaust/scf fuel)/(btu/scf fuel)*(1000000 btu/MMbtu)

9867 dscf/Mmbtu

EXPANSION AND F-FACTOR CALC. METHOD

 Client:
 Bradley Landfill
 Date:
 4/20/04

 Location:
 Sun Valley, CA
 Job #:
 W07-039

 Unit:
 Flare #1
 Run#:
 2

Fuel temperature deg. F Std. Temp. 60 deg. F
Fuel Pressure psi
Fuel Flow Rate cfm Fuel Flow 3928 dscfm
Exhaust Outlet O2 12.94 %

Barometric Pressure 29.23

COMPONENTS		MOLE %	HHV btu/ft3	LLV btu/ft3	Exp Factor dscf/scf fuel
Oxygen		1.59			0.016
Nitrogen		20.51			0.205
Carbon Dioxide		36.15			0.362
Methane		41.75	421.68	379.67	3.578
Ethane	C2		0.00	0.00	0.000
Propane	СЗ		0.00	0.00	0.000
Iso-Butane	C4	!	0.00	0.00	0.000
N-Butane			0.00	0.00	0.000
Iso-Pentane	C5		0.00	0.00	0.000
N-Pentane			0.00	0.00	0.000
Hexane	C6		0,00	0.00	0.000
Heptane	C7		0,00	0.00	0.000
Octane	C8		0.00	0.00	0,000
Nonane	ca [0.00	0.00	-,000
Total		100.00	421.68	379.67	4.16

CALCULATIONS

EXHAUST FLOW RATE, Q = (scfm*Exp Fac)*(20.92(20.92-%O2)

42817 DSCFM

EPA F-Factor = (scf exhaust/scf fuel)/(btu/scf fuel)*(1000000 btu/MMbtu)

9867 dscf/Mmbtu

SCAQMD Method 307.91

Facility:

Bradley Landfill

Source: Job No.:

Date:

Flare #1 W07-039

4/20/04

Sulfur Compounds

Speciated Compound		Concentration ppm, as H2S	No. of S molecules in Compound	Total S ppm, as H2S	SO2 Conc. mg/dscf	Avg. Inlet Flow Rate dscfm	SO2 Rate lb/hr
Hydrogen Sulfide Carbonyl Sulfide Methyl mercaptan Ethyl mercaptan Dimethyl sulfide Carbon disulfide Dimethyl disulfide iso-propyl mercaptan n-propyl mercaptan	<	68.1 0.39 2.58 0.09 6.26 0.10 0.220 0.32 0.06	1 1 1 1 2 2 2 1	68.10 0.39 2.58 0.09 6.26 0.20 0.44 0.32 0.06	5.215 0.030 0.198 0.007 0.479 0.015 0.034 0.025 0.005	3858 3858 3858 3858 3858 3858 3858 3858	2.661 0.015 0.101 0.004 0.245 0.008 0.017 0.013 0.002
Total				78.44			3.07

Bradley Landfill

Source:

Flare #1 W07-039

Job No.: Date:

4/20/04

STANDARD TEMPERATURE	Degrees F	60				
RUN NUMBER	****	1	2	1	2	
DATE OF RUN	*****	04/20/04	04/23/03	04/20/04	04/23/03	3
CLOCK TIME: INITIAL	*****	1600	1751	1600	1751	
CLOCK TIME: FINAL	*****	1706	1857	1706	1857	
AVG. STACK TEMPERATURE	Degrees F	1527	1520			
AVG. SQUARE DELTA P	Inches H20	0.1000	0.1000			
NOZZLE DIAMETER	Inches	1.090	1.090			
BAROMETRIC PRESSURE	Inches HG	29.23	29.23			
SAMPLING TIME	Minutes	60	60			
SAMPLE VOLUME	Cubic Feet	62.802	64.310			
AVG. METER TEMP.	Degrees F	72.0	67.5			
AVG. DELTA H	Inches H20	3.60	3.60			
DGM CALIB. FACTOR [Y]	***	1.0055	1.0055			
WATER COLLECTED	Milliliters	134	115			
CO 2	Percent	6.92	6.99			
02	Percent	12.97	12.94			
CO	Percent					
CH4	Percent					
N 2	Percent	80.11	80.08			
STACK AREA	Square Inches	16286.0	16286.0			
STATIC PRESSURE	Inches WG.	-0.010	-0.010			
PITOT COEFFICIENT	****	0.84	0.84			
SAMPLE VOLUME DRY	DSCF	60.85	62.84			
WATER AT STD.	SCF	6.3	5.4			
MOISTURE	Percent	9.4	7.9			
MOLE FRACTION DRY GAS	*****	0.91	0.92			
MOLECULAR WT.DRY	lb/lb Mole	29.63	29.64			
EXCESS AIR	Percent	159	158			
MOLECULAR WT. WET	lb/lb Mole	28.53	28,71			
STACK GAS PRESSURE	Inches HG	29.23	29,23			
STACK VELOCITY	AFPM	665	662			
VOLUMETRIC FLOWRATE, DRY STD.	DSCFM	17421	17680	41474	* 42817	*
VOLUMETRIC FLOWRATE, ACTUAL	ACFM	75234	74861			
ISOKINETIC RATIO	Percent	100	102			
CALCULATIONS FOR GRAIN LOADING AND EN	MISSION RATES					
TOTAL PARTICULATE	ma	22.5	15.0	22.5	15.0	
	mg gr/dscf	0.0057	0.0037	0.0057	0.0037	
PARTICULATE CONCENTRATION	_				1.35	
PARTICULATE EMISSION RATE	lb/hr	0.85	0.56	2.02	1.30	

^{*}Denotes the use of calculated flowrate based on expansion factor of LFG.

SCAQMD Method 100.1 Emission Rates

1

as Found

9867

41474

12.97

6.92

10.3

23.3

1.25E-06

3.26E-02

3.116

2

as Found

9867

42817

12.94

6.99

7.0

15.7

8.46E-07

2.19E-02

2.174

Facility: Source: Job No.: Date:		
Run Numb	er	****
Load		*****
EPA F-Fac	tor	dscf/MMBtu
Stack Flow	Rate	dscfm
Oxygen		%
Carbon Dic	oxide	%
Oxides of N	litrogen	
Concentrat	ion	ppm
Concentrat	ion @ 3 % O2	ppm
Concentrat	ion	lb/dscf
Emission R	ate	lb/MMBtu

Carbon Monoxide*

Emission Rate

Concentration	ppm	119	116
Concentration @ 3 % O2	ppm	269	261
Concentration	lb/dscf	8.78E-06	8.56E-06
Emission Rate	lb/MMBtu	2.28E-01	2.22E-01
Emission Rate	lb/hr	21.8	22.0

lb/hr

^{*} Carbon monoxide concentration determined from analysis of Tedlar bag samples

Client: Job No.: Site: Unit:	Waste Managem W07-039 Bradley Landfill Flare #1	ent				Date: Run #: Fuel: Std. O2:	04/20/04 1 L.F.G. 3
			O2 %	CO2 %	NOx ppm	CO ppm	
Range: Span: Low:			25.00 11.98	20.00 7.00	25.00 9.93	100.00 50.20	
High:			20.90	11.98	20.40	80.20	
			** PO	ST-TEST DR	IFT **		
Values							
Zero:			-0.12	0.00	-0.13	0.00	
Span:			12.00	7.00	9.89	50.10	
Percent Drift							
Zero:			-0.48	0.00	-0.52	0.00	
Span:			0.08	0.00	-0.16	-0.10	
оран.			0.00	0.00	-0.10	-0.10	
			** PR	E-TEST BIAS) **		
Values							
Zero:			0.13	0.00	0.12	0.00	
Span:			11.98	6.95	9.50	50.00	
				ST-TEST BIAS		00.00	
Values							
Zero:			0.12	0.00	-0.20	-0.50	
Span:			12.10	6.80	9.85	49.40	
Орип.				CORRECTIO		43.40	
Zero Average			0.13	0.00	-0.04	-0.25	
Span Average			12.04	6.88	-0.0 4 9.68		
Opan Average			12.04	0.00	9.00	49.70	
Bias-Corrected Cor			12.97	6.92	10.33	58.15	
Bias-Corrected Cor	ic.(O2 adjusted)	-11.			23.32	131.24	
		**	RAW AVERA	GE CONCEN	ITRATION **		
Average:			13.02	6.80	10.07	57.61	
O2 adjust:		3.0		3.50	22.88	130.93	
Date	Time	0.0	O2	CO2	NOx	CO	
20-Apr-04	THIC		O _E	002	1400	00	
20-Apr-04	1600		12.77	6.00	11 25	11.02	
20-Apr-04 20-Apr-04	1601			6.98	11.35	11.93	
•			13.10	6.59	9.43	67.61	
20-Apr-04	1602		13.27	6.44	8.40	100.28	
20-Apr-04	1603		13.36	6.57	9.15	100.28	
20-Apr-04	1604		13.10	6.73	9.78	92.18	
20-Apr-04	1605		13.19	6.63	9.45	81.87	

20-Apr-04	1606	13.04	6.85	11.16	71.54	
20-Apr-04	1607	13.04	6.71	10.66	29.57	
20-Apr-04	1608	12.93	7.00	11.78	30.12	
20-Apr-04	1609	12.99	6.72	10.26	26.55	
20-Apr-04	1610	13.28	6.43	7.94	95.61	
20-Apr-04	1611	13.08	6.93	9.50	98.84	
20-Apr-04	1612	13.02	6.72	9.37	95.69	
20-Apr-04	1613	12.99	6.87	10.82	60.66	
20-Apr-04	1614	13.00	6.82	10.44	39.46	
20-Apr-04	1615	12.97	6.84	10.71	36.48	
20-Apr-04	1616	12.92	6.99	11.38	36.09	
20-Арг-04	1617	12.88	6.91	10.89	16.46	
20-Apr-04	1618	13.04	6.64	9.61	36.66	
20-Apr-04	1619	13.21	6.68	9.51	93.44	
20-Apr-04	1620	13.18	6.66	9.24	88.11	
20-Apr-04	1621	13.04	6.80	9.64	52.24	
20-Apr-04	1622	13.27	6.41	8.43	79.12	
20-Apr - 04	1623	13.43	6.50	8.64	100.28	
20-Apr-04	1624	13.18	6.66	10.22	95.19	
20-Apr-04	1625	13.07	6.81	11.01	61.13	
20-Apr-04	1626	12.82	7.08	11.62	17.33	
20-Apr-04	1627	12.76	7.00	11.02	6.78	
20-Apr-04	1628	12.60	7.28	11.38	6.77	
20-Apr-04	1629	12.84	6.86	11.03	10.34	
20-Apr-04				, ,,,,,		rt change
20-Apr-04	1634	13.15	6.74	10.20	37.61	rt onange
20-Apr-04	1635	13.07	6.73	10.49	38.89	
20-Apr-04	1636	13.13	6.71	10.23	46.54	
20-Apr-04	1637	13.08	6.82	10.58	34.00	
20-Apr-04	1638	12.83	7.02	11.08	11.91	
20-Apr-04	1639	13.00	6.73	10.26	20.36	
20-Apr-04	1640	13.15	6.69	9.35	82.29	
20 - Apr-04	1641	13.11	6.70	8.87	87.64	
20-Apr-04	1642	13.19	6.65	8.73	100.29	
20-Apr-04	1643	13.09	6.77	9.52	100.28	
20-Apr-04	1644	12.75	7.19	11.02	50.64	
20-Apr-04	1645	12.79	6.93	10.71	29.34	
20-Apr-04	1646	12.79	7.06	11.21	27.97	
20-Apr-04	1647	12.77	7.06	11.27	15.69	
20-Apr-04	1648	12.67	7.13	10.84	8.98	
20-Арг-04	1649	12.98	6.74	9.50	66.99	
20-Apr-04	1650	13.10	6.65	9.40	77.05	
20-Apr-04	1651	13.17	6.76	9.37	94.40	
20 - Apr-04	1652	13.19	6.55	8.69	89.08	
20-Apr-04	1653	13.20	6.66	9.54	100.28	
20-Apr-04	1654	13.09	6.84	10.38	90.43	
20-Apr-04	1655	12.67	7.17	11.31	14.15	
20-Apr-04	1656	12.80	6.94	10.80	13.32	
20-Apr-04	1657	13.09	6.67	9.99	30.78	
20-Apr-04	1658	13.10	6.71	9.72	49.26	

20-Apr-04	1659	13.16	6.67	8.77	100.29
20-Apr-04	1700	13.16	6.70	8.97	100.28
20-Apr-04	1701	13.11	6.64	8.75	100.29
20-Apr-04	1702	13.24	6.67	8.74	100.29
20-Apr-04	1703	13.01	6.87	10.51	95.43
20-Apr-04	1704	12.63	7.25	12.13	14.99
20-Apr-04	1705	12.78	6.87	11.20	5.81
20-Apr-04	1706	12.96	6.89	10.07	29.13
20-Apr-04	1707	13.13	6.58	8.36	83.94

CONTRACTOR

the futernites

Parameter S

Securitaria de la constanta de

brancasta

Person son street

Santanana de la

porticularity best sectored

Client: Job No.: Site: Unit:	Waste Management W07-039 Bradley Landfill Flare #1				Date: Run #: Fuel: Std. O2:	04/20/04 2 L.F.G.
		O2 ⁻ %	CO2 %	NOx ppm	CO ppm	
Range: Span: Low:		25.00 11.98	20.00 7.00	25.00 9.93	100.00 50.20	
High:		20.90	11.98	20.40	80.20	
		** PC	ST-TEST DF	RIFT **		
Values						
Zero:		-0.12	0.00	-0.13	0.00	
Span:		12.00	7.00	9.89	50.10	
Percent Drift						
Zero:		-0.48	0.00	0.50		
Span:		-0.46 0.08	0.00	-0.52	0.00	
орин.		0.08	0.00	-0.16	-0.10	
		** PR	E-TEST BIAS	S **		
Values			2 1201 21/10	•		
Zero:		0.13	0.00	0.12	0.00	
Span:		11.98	6.95	9.50	50.00	
·			ST-TEST BIA		30,00	
Values				-		
Zero:		0.12	0.00	-0.20	-0.40	
Span:		12.05	6.80	9.70	49.50	
		** BIAS	CORRECTIO			
Zero Average		0.13	0.00	-0.04	-0.20	
Span Average		12.02	6.88	9.60	49.75	
Bias-Corrected Conc	ontration	40.04	0.00			
Bias-Corrected Conc		12.94	6.99	6.98	31.93	
Dias collected colle	- ·	* DAMANEDA	CE CONCEN	15.69	71.76	
		* RAW AVERA	GE CONCEI	NIRATION **		
Average:		12.96	6.86	6.74	31.57	
O2 adjust:	3.0		0.00	15.20	71.20	
Date	Time	O2	CO2	NOx	CO	
					50	
20-Apr-04	1751	12.77	7.00	6.83	80.80	
20-Apr-04	1752	12.84	7.00	6.84	35.70	
20-Apr-04	1753	12.86	6.85	6.49	37.89	
20-Apr-04	1754	12.86	7.02	6.95	39.17	
20-Apr-04	1755	12.93	6.92	6.74	22.51	
20-Apr - 04	1756	12.94	6.88	6.57	54.89	

A CONTRACTOR OF THE PARTY OF TH

						"
20-Apr-04	1757	12.80	7.01	6.97	21.80	
20-Apr-04	1758	12.77	7.00	7.00	11.05	
20-Apr-04	1759	13.02	6.87	6.62	43.13	
20-Apr-04	1800	12.91	6.78	6.50	45.34	
20-Apr-04	1801	12.99	6.94	6.73	47.61	
20-Apr-04	1802	12.89	6.91	6.81	25.69	i i
20-Apr-04	1803	12.71	7.14	7.16	19.37	
20-Apr-04	1804	12.92	6.72	6.50	18.78	9
20-Apr-04	1805	13.10	6.82	6.66	45.66	ĺ
20-Apr-04	1806	13.14	6.64	6.37	50.24	
20-Apr-04	1807	13.13	6.72	6.59	32.40	•
20-Apr-04	1808	13.05	6.83	6.67	23.02	
20-Apr-04	1809	12.99	6.85	6.76	14.68	50
20-Apr-04	1810	12.97	6.83	6.58	18.47	
20-Apr-04	1811	13.13	6.71	6.28	46.60	
20-Apr-04	1812	13.09	6.73	6.35	58.20	ĕ
20-Apr-04	1813	13.20	6.62	6.18	84.20	5
20-Apr-04	1814	12.82	7.13	7.41	28.55	
20-Apr-04	1815	12.81	6.98	7.19	4.96	<u>į</u>
20-Apr-04	1816	12.79	7.03	7.25	2.39	
20-Apr-04	1817	13.00	6.75	6.45	11.79	
20-Apr-04	1818	13.07	6.77	6.23	60.01	3
20-Apr-04	1819	13.09	6.77	6.28	69.66	
20-Apr-04	1820	13.03	6.79	6.43	41.06	•
20-Apr-04					Port ch	ange
20-Apr-04	1827	12.98	6.85	6.44	87.60	· ·
20-Apr-04	1828	13.05	6.70	6.27	44.79	Wasses
20-Apr-04	1829	13.02	6.91	6.85	63.00	
20-Apr-04	1830	12.82	7.05	7.26	32.37	
20-Apr-04	1831	12.61	7.20	7.56	7.28	(i)
20-Apr-04	1832	12.88	6.85	6.89	8.05	: : :
20-Apr-04	1833	12.80	7.01	7.15	9.18	
20-Apr-04	1834	13.14	6.59	6.21	50.52	
20-Apr-04	1835	13.07	6.84	6.74	45.26	
20-Apr-04	1836	13.03	6.79	6.64	17.14	φ.
20-Apr-04	1837	13.04	6.79	6.65	18.54	T T
20-Apr-04	1838	13.00	6.77	6.59	17.04	
20-Apr-04	1839	13.20	6.69	6.46	48.26	ŭ
20-Apr-04	1840	13.09	6.77	6.69	31.51	F
20-Apr-04	1841	13.08	6.73	6.54	33.62	
20-Apr-04	1842	13.03	6.81	6.76	18.14	ii ii
20-Apr-04	1843	12.96	6.85	6.92	8.52	rt
20-Apr-04	1844	12.95	6.86	6.90	5.93	
20-Apr-04	1845	12.88	7.04	7.15	10.98	å
20-Apr-04	1846	12.87	6.86	6.85	4.81	
20-Apr-04	1847	13.08	6.75	6.47	29.21	Wildelin
20-Apr-04	1848	13.09	6.76	6.32	76.24	Black
20-Apr-04	1849	13.06	6.76	6.38	74.77	
20-Apr-04	1850	13.00	6.82	6.55	42.52	Edition (
20-Apr-04	1851	12.87	7.08	7.20	34.92	

20-Apr-04	1852	12.82	6.91	6.98	5.92
20-Apr-04	1853	12.91	6.98	7.07	8.14
20-Apr-04	1854	12.78	6.94	7.00	5.57
20-Apr-04	1855	13.03	6.81	6.78	9.97
20-Apr-04	1856	12.96	6.96	7.12	9.24
20-Apr-04	1857	12.94	6.85	6.98	4.81
20-Apr-04	1858	12.94	6.84	6.95	5.44
20-Apr-04	1859	13.06	6.79	6.75	24.06

The second second

Facility: Waste Management Source: Flare #1 Job No.: W07-039 Test Date: 4/20/04

CALIBRATION	ERROR		
25	20	100	25
02	CO2	co	NOx
0.00	0.00	0.00	0.00
00,0	0,00	0.00	0.00
0.00	0.00	0.00	0.00
0,00	0,00	0.00	0.00
12.13	7.00	49.80	9.88
11.98	7.00	50.20	9.93
0.58	0.00	-0.40	-0.20
<u>_</u>			
21.13	11.90	80.00	20.13
20,90	11,98	80.20	20.40
0.90	-0.40	-0.20	-1.10
	25 O2 0.00 0.00 0.00 0.00 0.00 12.13 11.98 0.58	02 CO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.13 7.00 11.98 7.00 0.58 0.00 21.13 11.90 20.90 11.98	25 20 100 O2 CO2 CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.13 7.00 49.80 11.98 7.00 50.20 0.58 0.00 -0.40 21.13 11.90 80.00 20.90 11.98 80.20

RETEST	LINEARITY	
	Cylinder	Instrument
	<u>02</u>	
Zero	0.00	0.00
High Level	20.90	21.13
Slope	0.99	
Intercept	0,00	Status
Predicted Value	12.11	<1
Linearity (%)	0,06	PASS
	<u>CO2</u>	
Zero	0.00	0.00
High Level	11.98	11.90
Stope	1,01	
Intercept	0.00	Status
Predicted Value	6.95	<1
Linearity (%)	0.23	PASS
	CO2	
Zero	0.00	0.00
High Level	80.20	80.08
Slope	1.00	
intercept	0.00	Status
Predicted Value	50.07	<1
Linearity (%)	0.27	PASS
	<u>NOX</u>	
Zero	0.00	0.00
High Level	20.40	20.13
Slope	1.01	
Intercept	0.00	Status
Predicted Value	9.80	<1
Linearity (%)	0,34	PASS

POST TEST	CALIBRATION	ERROR		
LEAK CHECK				
	O2	C02	CO	NOx
ZERO				
Instrument	-0.25	0.00	0.00	0.00
Cylinder	0.00	0.00	0.00	0.00
Difference (%)	-1.00	0.00	0.00	0.00
LOW LEVEL				
Instrument				
Cylinder				
Difference (%)	0,00	0.00	00,0	0,00
MID LEVEL				
Instrument	12.00	7.00	50.00	9.98
Cylinder	11,98	7,00	50.20	9,93
Difference (%)	0.08	0.00	-0.20	0.20
HIGH LEVEL				
Instrument	21.25	12.00	80.50	21.00
Cylinder	20,90	11.98	80,20	20,40
Difference (%)	1.40	0.10	0.30	2.40

ST TEST	LINEARITY	
	Cylinder	Instrument
	02	
Zero	0.00	-0.25
High Level	20.90	21.25
Slope	0.97	21.20
Intercept	0.24	Status
Predicted Value	12,07	<1
Linearity (%)	0.30	PASS
	CO2	
Zero	0,00	0.00
High Level	11.98	12.00
Stope	1.00	
Intercept	0.00	Status
Predicted Value	7.01	<1
Linearity (%)	0.06	PASS
	CO2	
Zero	0,00	0.00
High Level	80.20	80.50
Slope	1.00	
Intercept	0.00	Slalus
Predicted Value	50.39	<1
Linearity (%)	0,39	PASS
	<u>NOX</u>	
Zero	0.00	0.00
High Level	20.40	21,00
Slope	0,97	
Intercept	0.00	Status
Predicted Value	10.22	<1
Linearity (%)	0.97	PASS

Facility: Waste Management Source: Flare #1 Job No.: W07-039 Test Date: 4/20/04

SYSTEM RESPO			
	#1	#2	#3
Upscale			
NOx	22		
co	55		
O2	31		
CO2	20		
Downscale			
NOx	23		
CO	50		
Q 2	28		
CO2	20		

NOZ CONVERTER I	7774121101		
	ppm	**	status
Cylinder(Co)	18.90		
NO Mode(C1)	1.50		
NOx Mode(C2)	17.50		
01	17.40		
2	16,00		
3	1.40		
E		91.95	
CE > 90 %			PASS

Table 5-2
Trace Organic Species
Destruction Efficiency Results
Waste Management - Bradley Landfill
Flare #1
April 20, 2004

		INLET Flow rate	3858	dscfm	OUTLET Flow rate	42145.8	dscfm
Species	Conc.	Conc.	Em. Rate	Conc.		Em. Rate	Dest, Eff.
Hydrogen Sulfide	(ppb)	(mg/dscf)	(lb/hr)	(ppb)	(mg/dscf)	(lb/hr)	(%)
r lydrogerr Stillide	68100	2.78E+00	1.42E+00	< 500	< 2.04E-02	< 1.14E-01	> 91.98
Benzene	2720	2.54E-01	1.29E-01	< 0.2	< 1.86E-05	< 1.04E-04	> 99.92
Benzychloride	< 40	< 6.07E-03	< 3.10E-03	< 0.8	< 1.21E-04	< 6.77E-04	NA
Chlorobenzene	152	2.05E-02	1.05E-02	< 0.2	< 2.70E-05	< 1.51E-04	> 98.56
Dichlorobenzenes	2120	3.72E-01	1.90E-01	< 1.1	< 1.93E-04	< 1.08E-03	> 99.43
1,1-dichloroethane	459	5.43E-02	2.77E-02	< 0.2	< 2.37E-05	< 1.32E-04	> 99.52
1,2-dichloroethane	95.6	1.13E-02	5.77E-03	< 0.2	< 2.37E-05	< 1.32E-04	> 97.71
1,1-dichloroethylene	64.9	7.52E-03	3.84E-03	< 0.2	< 2.32E-05	< 1.29E-04	> 96,63
Dichloromethane	1840	1.87E-01	9.54E-02	1.04	1.06E-04	5.89E-04	99.38
1,2-Dibromoethane	< 30	< 6.74E-03	< 3.44E-03	< 0.2	< 4.49E-05	< 2.50E-04	NA
Perchloroethene	3160	8.95E-01	4.57E-01	< 0.2	< 5.66E-05	< 3.16E-04	> 99.93
Carbon tetrachloride	< 30	< 5.52E-03	< 2.82E-03	< 0.1	< 1.84E-05	< 1.03E-04	NA
Toluene	45600	5.01E+00	2.56E+00	1.27	< 1.40E-04	< 7.78E-04	99.97
1,1,1-trichloroethane	20.8	3.31E-03	1.69E-03	< 0.1	< 1.59E-05	< 8.86E-05	> 94.75
Trichloroethene	1160	1.82E-01	9.27E-02	< 0.1	< 1.57E-05	< 8.73E-05	> 99.91
Chloroform	< 20	< 2.84E-03	< 1.45E-03	< 0.1	< 1.42E-05	< 7.93E-05	NA
Vinyl Chloride	278	2.08E-02	1.06E-02	< 0.1	< 7.47E-06	< 4.16E-05	> 99.61
m+p-xylenes	28200	3.57E+00	1.82E+00	< 0.2	< 2.53E-05	< 1.41E-04	> 99.99
o-xylene	3900	4.94E-01	2.52E-01	0.8	< 1.01E-04	< 5.65E-04	> 99.78
TNMHC	12026890	2.30E+02	1.17E+02	5855	1.12E-01	6.24E-01	99.47

Note: All values preceded by "<" are below the detection limit. The reported values are the detection limit, NA-Not Applicate: Destruction efficiency can not be calculated since both inlet and outlet values are below the detection limit.

APPENDIX C - Laboratory Results

AtmA A Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

environmental consultants laboratory services

LABORATORY ANALYSIS REPORT

CO, CH₄, CO₂, TGNMO, and Ethane Analysis in Tanks and Traps by SCAQMD Method 25 (FID/TCA)

Report Date: April 27, 2004

Client: Horizon Air Measurement

Project No.: W07-039

Source Location: Waste Management / Bradley Landfill / Sun Valley CA.

Source ID: Flare Inlet

Date Received: April 21, & 29, 2004 Date Analyzed: April 22, & 30, 2004

AtmAA Lab No.		Sample ID		Tank CO	Tank CH ₄ (Co.	Tank CO ₂ ncentration	Tank Ethane is in ppm	Tank TGNMO	Trap CO2 in ICV	Tank O2 (%v)	P ₁	P ₂
	Tank	Trap	ICV					·		1,,,,,		, second
01124-7	C.	U	12	53.1	412000	360000	8.09	1040	42400	1.76	542	820
01124-8	ļ	Y1	6	52.1	423000	363000	5.04	1240	42000	1.42	560	820

trap burn system blank H

78.3

TGNMO is total gaseous non-methane organics (excluding ethane) reported as ppm methane. Ethane is reported as ppmv methane.

P₁ - Initial Pressure, mm Hg

P₂ - Final Pressure, mm Hg

Michael L. Porter

Laboratory Director

QUALITY ASSURANCE SUMMARY (Repeat Analyses)

Client Project No.: W07-039

Date Received: April 21, & 29, 2004 Date Analyzed: April 22, & 30, 2004

Components	Sample ID	Run #1	Analysis Run #2 centration in p	Mean Conc.	% Diff. From Mean
СО	TK C TK I	53.7 51.9	52.5 52.2	53.1 52.1	1.1 0.35
CH₄	TK C	412000	412000	412000	0.0
CO ₂	TK C TK I	358000	362000	360000	0.56
Ethane	TK C TK I	8.08 5.04	8.11 5.04	8.09 5.04	0.13 0.0
TGNMO	TK C TK I	1040 1240	1040 1180	1040 1210	0.0 2.5
CO ₂ in ICV (in trap, transfer tanks)	ICV 12	42100	42600	42400	0.59
		(Cond	centration in	%v)	
Oxygen	TK C	1.84	1.69	1.76	4.1

A set of 2 TCA samples, laboratory numbers 01124-(7 & 8), was analyzed for CO, CH_4 , CO_2 , total gaseous non-methane organics (TGNMO), and ethane. Agreement between repeat analyses is a measure of precision and is shown above in the column "% Difference from Mean". Repeat analyses are an important part of AtmAA's quality assurance program. The average % Difference from Mean for 10 repeat measurements from the sample set of 2 TCA samples is 0.94%.

Gas standards (containing CO, CH_4 , CO_2 and isobutane) used for TCA analyses, were prepared and certified by Praxair.

Ating AA Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

LABORATORY ANALYSIS REPORT

environmental consultants laboratory services

Organic Carbon Analysis in Water Impingers, and Methane and TGNMO Analysis in SUMMA Canister Samples from Impinger/Canister Train Sample Collection

Report Date: April 28, 2004

Client: Horizon

P.O. No.: Verbal

Client Project No.: W07-039

Source Location: Waste Management / Bradley Landfill / Sun Valley CA.

Date Received: April 21, 2004

Date Analyzed: April 21, & 26, 2004

ANALYSIS DESCRIPTION

Methane & TGNMO were measured by flame ionization detection/total combustion analysis (FID/TCA), Method 25. Organic carbon in water impinger samples were measured by Dohrman total organic carbon analyzer, water FID/TCA.

AtmAA Lab No.	Sample ID	Canister Methane	Canister Ethane entration in	Canister TGNMO	Impinger Organic Carbon as Methane	Impinger Volume	P ₁	P ₂	
01124-9	SUMMA S18	<1	<1	3.39	(ppmv) 	(ml) 	 577	l [820]	l : l
01124-10	Impinger 15H SUMMA S21	<1	 <1	2.28	2.16 	1.98	567	820	F 111
	Impinger 17H				3.88	2.22			ي ا

TGNMO is total gaseous non-methane organics (excluding ethane), reported as ppm methane. Ethane is reported as ppmv methane.

Michael L. Porter Laboratory Director

^{*} Note - Impinger sample results are not blank corrected. The field blank (impinger U18), from another job. contained 1.69 ug carbon as methane, corresponding to 0.57 ppm methane for a 4.53 liter sample. P_1 and P_2 are initial and final pressures measured in mm Hg.

QUALITY ASSURANCE SUMMARY (Repeat Analyses)

Project No.: W07-039

Date Received: April 21, 2004

Date Analyzed: April 21, & 26, 2004

Components	Sample ID	Run #1	Analysis Run #2 entration in p	Mean Conc.	% Diff. From Mean
		,000		,ρ ν ,	
Methane	SUMMA S18	<1	<1	***	
	SUMMA S21	<1	<1		
Ethane	SUMMA S18	<1	<1		
	SUMMA S21	<1	<1		
TGNMO	SUMMA S18	3.39	3.38	3.39	0.15
	SUMMA S21	2.30	2.26	2.28	0.88
Impinger TOC	Impinger 15H	2.13	2.18	2.16	1.2
	Impinger 17H	3.91	3.84	3.88	0.90

A set of 2 canister/impinger samples, laboratory numbers 01124-(9 - 10), was analyzed for methane, ethane, total gaseous non-methane organics (TGNMO), and TOC. Agreement between repeat analysis is a meaure of precision and is shown in the column "% Difference from Mean". Repeat analyses are an important part of AtmAA's quality assurance program. The average % Difference from Mean for 4 repeat measurements from the sample set of 2 canister/impinger samples is 0.77%.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

LABORATORY ANALYSIS REPORT

environmental consultants laboratory services

SCAQMD Rule 1150.1 Components Analysis in Inlet Gas Tedlar Bag Sample

Report Date: April 27, 2004

Client: Horizon

Project Location: Waste / Bradley Landfill

Client Project No.: W07-039
Date Received: April 21, 2004
Date Analyzed: April 21, 2004

AtmAA Lab No.:

01124-11

Sample I.D.:

W07039-F#1 IN-TB-1

Components
Hydrogen sulfide

(Concentration in ppmv)

68.1

(Concentration in ppbv)

	(Concentration in ppov)
Benzene	2720
Benzylchloride	<40
Chlorobenzene	152
Dichlorobenzenes*	2120
1,1-dichloroethane	459
1,2-dichloroethane	95.6
1,1-dichloroethylene	64.9
Dichloromethane	1840
1,2-dibromoethane	<30
Perchloroethene	3160
Carbon tetrachloride	<30
Toluene	45600
1,1,1-trichloroethane	20.8
Trichloroethene	1160
Chloroform	<20
Vinyl chloride	278
m+p-xylenes	28200
o-xylene	3900

^{*} total amount containing meta, para, and ortho isomers

Michael L. Porter Laboratory Director

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

environmental consultants laboratory services

LABORATORY ANALYSIS REPORT

Hydrogen Sulfide and Reduced Sulfur Compounds Analysis in Inlet Tedlar Bag Sample

Report Date: April 27, 2004

Client: Horizon

Project Location: Waste / Bradley Landfill

Client Project No.: W07-039
Date Received: April 21, 2004
Date Analyzed: April 21, 2004

ANALYSIS DESCRIPTION

Hydrogen sulfide was analyzed by gas chromatography with a Hall electrolytic conductivity detector operated in the oxidative sulfur mode. All other components were measured by GC/ Mass Spec.

Components	AtmAA Lab No.: Sample I.D.:	01124-11 W07039-F#1 IN-TB-1
Components		(Concentration in ppmv)
Hydrogen sulfide Carbonyl sulfide Methyl mercaptan Ethyl mercaptan Dimethyl sulfide Carbon disulfide isopropyl mercaptan n-propyl mercaptan Dimethyl disulfide		68.1 0.39 2.58 <0.09 6.26 0.10 0.32 <0.06 0.22
TRS		78.3

TRS - total reduced sulfur

Michael L. Porter Laboratory Director

QUALITY ASSURANCE SUMMARY (Repeat Analyses)

Client Project No.: W07-039 Date Received: April 21, 2004 Date Analyzed: April 21, 2004

	Sample ID	Run #1	Analysis Run #2	Mean Conc.	% Diff. From Mean
Components		(Cond	entration in	ppbv)	
Benzene	W07039-F#1-IN-TB-1	2660	2790	2720	2.4
Benzylchloride	W07039-F#1-IN-TB-1	<40	<40		
Chlorobenzene	W07039-F#1-IN-TB-1	151	152	152	0.33
Dichlorobenzenes	W07039-F#1-IN-TB-1	2120	2110	2120	0.24
1,1-dichloroethane	W07039-F#1-IN-TB-1	445	473	459	3.0
1,2-dichloroethane	W07039-F#1-IN-TB-1	88.3	103	95.6	7.7
1,1-dichloroethylene	W07039-F#1-IN-TB-1	69.0	60.8	64.9	6.3
Dichloromethane	W07039-F#1-IN-TB-1	1680	2000	1840	8.7
1,2-dibromoethane	W07039-F#1-IN-TB-1	<30	<30		
Perchloroethene	W07039-F#1-IN-TB-1	3070	3240	3160	2.7
Carbon tetrachloride	W07039-F#1-IN-TB-1	<30	<30		10-11-10s
Toluene	W07039-F#1-IN-TB-1	44800	46500	45600	1.9
1,1,1-trichloroethane	W07039-F#1-IN-TB-1	19.5	22.0	20.8	6.0
Trichloroethene	W07039-F#1-IN-TB-1	1130	1200	1160	3.0
Chloroform	W07039-F#1-IN-TB-1	<20	<20		19 PM
Vinyl chloride	W07039-F#1-IN-TB-1	268	289	278	3.8
m+p-xylenes	W07039-F#1-IN-TB-1	28000	28500	28200	0.88
o-xylene	W07039-F#1-iN-TB-1	3870	3920	3900	0.64

QUALITY ASSURANCE SUMMARY (Repeat Analyses) (continued)

Sulfue Community	Sample ID	Run #1	Analysis Run #2	Mean Conc.	% Diff. From Mean
Sulfur Components		(Cond	entration in p	omv)	·
Hydrogen sulfide	W07039-F#1-IN-TB-1	67.5	68.7	68.1	0.88
Carbonyl sulfide	W07039-F#1-IN-TB-1	0.39	0.39	0.39	0.0
Methyl mercaptan	W07039-F#1-IN-TB-1	2.54	2.62	2.58	1.6
Ethyl mercaptan	W07039-F#1-IN-TB-1	<0.09	<0.09		
Dimethy! sulfide	W07039-F#1-IN-TB-1	6.23	6.28	6.26	0.40
Carbon disulfide	W07039-F#1-IN-TB-1	0.11	0.10	0.10	4.8
iso-propyl mercaptan	W07039-F#1-IN-TB-1	0.31	0.32	0.32	1.6
n-propyl mercaptan	W07039-F#1-IN-TB-1	<0.06	<0.06		
Dimethyl disulfide	W07039-F#1-IN-TB-1	0.22	0.21	0.22	2.3

One Tedlar bag sample, laboratory number 01124-11, was analyzed for SCAQMD Rule 1150.1 components, hydrogen sulfide, and total reduced sulfur compounds. Agreement between repeat analyses is a measure of precision and is shown above in the column "% Difference from Mean". Repeat analyses are an important part of AtmAA's quality assurance program. The average % Difference from Mean for 21 repeat measurements from the one Tedlar bag sample is 2.8%.

Atma A A Inc.

23917 Craftsman Rd., Calabasas, CA 91302 • (818) 223-3277 • FAX (818) 223-8250

environmental consultants laboratory services

LABORATORY ANALYSIS REPORT

SCAQMD Rule 1150.1 Components Analysis in Outlet Tedlar Bag Sample

Report Date: April 26, 2004

Client: Horizon

Project Location: Waste / Bradley Landfill

Client Project No.: W07-039
Date Received: April 21, 2004
Date Analyzed: April 21, 2004

AtmAA Lab No.:

01124-12

Sample I.D.:

W07039-F#1

EXH-TB-1

Components (Concentration in ppbv)

Hydrogen sulfide	<500
Benzene	<0.2
Benzylchloride	<0.8
Chlorobenzene	<0.2
Dichlorobenzenes*	<1.1
1,1-dichloroethane	<0.2
1,2-dichloroethane	<0.2
1,1-dichloroethylene	<0.2
Dichloromethane	1.04
1,2-dibromoethane	<0.2
Perchloroethene	<0.1
Carbon tetrachloride	<0.1
Toluene	1.27
1,1,1-trichloroethane	<0.1
Trichloroethene	<0.1
Chloroform	<0.1
Vinyl chloride	<0.2
m+p-xylenes	0.80
o-xylene	<0.2

^{*} total amount containing meta, para, and ortho isomers

Michael L. Porter Laboratory Director

QUALITY ASSURANCE SUMMARY (Repeat Analyses)

Client Project No.: W07-039
Date Received: April 21, 2004
Date Analyzed: April 21, 2004

	Sample		Analysis	Mean	% Diff.
Components	ID [Run #1 (Con	Run #2	Conc.	From Mean
Hydrogen sulfide	W07039-F#1-EXH-TB-1	<500	<500		***
Benzene	W07039-F#1-EXH-TB-1	<0.2	<0.2		= w =
Benzylchloride	W07039-F#1-EXH-TB-1	<0.8	<0.8		
Chlorobenzene	W07039-F#1-EXH-TB-1	<0.2	<0.2	***	
Dichlorobenzenes	W07039-F#1-EXH-TB-1	<1.1	<1.1		
1,1-dichloroethane	W07039-F#1-EXH-TB-1	<0.2	<0.2		
1,2-dichloroethane	W07039-F#1-EXH-TB-1	<0.2	<0.2		
1,1-dichloroethylene	W07039-F#1-EXH-TB-1	<0.2	<0.2		
Dichloromethane	W07039-F#1-EXH-TB-1	1.04	1.03	1.04	0.48
1,2-dibromoethane	W07039-F#1-EXH-TB-1	<0.2	<0.2		
Perchloroethene	W07039-F#1-EXH-TB-1	<0.1	<0.1	~~~	
Carbon tetrachloride	W07039-F#1-EXH-TB-1	<0.1	<0.1		
Toluene	W07039-F#1-EXH-TB-1	1.33	1.21	1.27	4.7
1,1,1-trichloroethane	W07039-F#1-EXH-TB-1	<0.1	<0.1		
Trichloroethene	W07039-F#1-EXH-TB-1	<0.1	<0.1		
Chloroform	W07039-F#1-EXH-TB-1	<0.1	<0.1		
Vinyl chloride	W07039-F#1-EXH-TB-1	<0.2	<0.2		
m+p-xylenes	W07039-F#1-EXH-TB-1	0.77	0.83	0.80	3.7
o-xylene	W07039-F#1-EXH-TB-1	<0.2	<0.2		~~~

One Tedlar bag sample, laboratory number 01124-12, was analyzed for SCAQMD Rule 1150.1 components. Agreement between repeat analyses is a measure of precision and is shown above in the column "% Difference from Mean". Repeat analyses are an important part of AtmAA's quality assurance program. The average % Difference from Mean for 3 repeat measurements from one Tedlar bag sample is 3.0%.

LABORATORY ANALYSIS REPORT

Carbon Monoxide Analysis in Tedlar Bag Sample

Report Date: May 7, 2004

Client: Horizon P.O. No.: Verbal

Client Project No.: W07-039

Source Location: Bradley Landfill / Sun Valley CA.

Source ID: Flare 1 Exhaust

Date Received: April 21, 2004 Date Analyzed: May 7, 2004

ANALYSIS DESCRIPTION

Carbon monoxide was measured by flame ionization detection/total combustion analysis (FID/TCA), Method 25.

AtmAA Lab No.:

01124-12

Sample I.D.:

W07039-F1-Exh-TB-1

Component

(Concentration in ppmv)

Carbon monoxide

119

(repeat)

114

Michael L. Porter Laboratory Director

LABORATORY ANALYSIS REPORT

Carbon Monoxide Analysis in Tedlar Bag Sample

Report Date: May 11, 2004

Client: Horizon
P.O. No.: Verbal

Client Project No.: W07-039

Source Location: Bradley Landfill / Sun Valley CA.

Source ID: Flare 1 Exhaust

Date Received: April 21, 2004 Date Analyzed: May 11, 2004

ANALYSIS DESCRIPTION

Carbon monoxide was measured by flame ionization detection/total combustion analysis (FID/TCA), Method 25.

AtmAA Lab No.:

01124-13

Sample I.D.:

W07039-F1-Exh-CO-2

Component (Concentration in ppmv)

Carbon monoxide

116

(repeat)

111

Michael L. Porter Laboratory Director CHAIN OF CUSTODY RECORD

Client/Project Name	Project Loca	tion	TOD! NE	CONE			, _					
Waste/Brackey LFEC	l .	Laller	1. CA					А	NALYS	SES A		/ /
	eld Logbook I	No.	1101	-		/-	7	10	\mathbb{Z}^{-}	1	7 5	/ /
W07-039					/:	/	/ <i> </i> /		g /	/	/ xs	
Sampler (Signature) Chai	in of Custody	Tape No.			-	: /	W		/ 0	`/	10	
					L		6	/ ~	16		13/	
	T			- /	CE /	<i>A</i>		0/	al /		& / <u> </u>	
Sample No./ Lab Sampl Identification Date Time Number	le	Type Sam			Control of the contro	V					DE EM	ARKS
TANIC* C 01/24	- 7			ĺχ	/ X	/ · 	///		/ 	ſί	7 7:2:00	
<u> </u>	-8			Ĺ	X				4			
50mm 518	-9					X			154			
531	-/0					X			170			
WO 7031-14-13-1 -	11						X	×				
W07089-241-2478-Z			_			,				X		
W07039-EH-Eh-78-1	-12					AL	X	×		[X	·
1W0 7031-4-1-1-6K4-7B-2	1									x /	····-	
Relinguishers by: Spanlature - Exh - 60 - 2	-13	Date	Time	Recei	ved by	(Sign	ature)	<u> </u>	_		Date	Time
					>						24.21.6	1 0800
Relinquished by: (Signature)		Date	Time		ved by	(Sign	ature)				Date	Time
		04.21.0	7 0935		cas.				-		421.04	9135
Relinquished by: (Signature)		Date	Time			Labor	atory:	Signat	ure)		Date	Time
Sample Disposal Method:		Disposed of	of by: (Signa	ature)			 .		_		Date	Time
SAMPLE COLLECTOR		ANALYTICA	L LABORA	TORY							+	
HORIZON AIR MEASUREMENT SERVICES,	INC											
996 Lawrence Drive, Suite 108												
Newbury Park, CA 91320 (805) 498-8781 Fax (805) 498-3173												
(000) 490-0701 Tax (800) 498-31/3	j										N :8	05
		 										1

Facility: WASTE MANAGEMENT

Source: FLARE 1 Job No.: W07-039 Test Date: 04/19-20/04

DATA SHEET FOR PARTICULATE MATTER SCAQMD METHOD 5.1

DATE SAMPLED: 04/20-21/04 DATE EXTRACTED: 05/03/04

RUN #1

= = o o e o o o						
	SAMPLE ID	BEAKER/ FILTER ID	VOLUME	INITIAL	FINAL	NET WEIGHT(g)
A - FILTER CATCH FILTER ACID FILTER SULFATE	W07039-F#1-EXH-M5-PF1	Q00127	NA	0.1491	0.1502	0.0011 0.0000
B - PROBE CATCH PROBE ACID PROBE SULFATE						0.0000 0.0000
C - IMP.CATCH(INSOL) INSOLUBLE ACID INSOLUBLE SULFATE	W07039-F#1-EXH-M5-EF1	Q00133	678	0.1501	0.1507	0.0000 0.0006 0.0000 0.0000
D - IMP. CATCH (SOL) SOLUBLE ACID SOLUBLE SULFATE	W07039-F#1-EXH-M5-R1	040102	678	29.3711	29.3891	0.0180 0.0000 0.0000
E - ORGANIC EXTRACT	W07039-F#1-EXH-M5-MC1	040113	125	29.9509	29.9537	0.0028
TOTAL PARTICULATE	(A+B+C+D+E)					0.0225
SOLID PARTICULATE	(A+B+C+D)					0.0197

SCAQMD Method 5.1

Source: FLARE 1 Job No.: W07-039 Test Date: 04/20-21/04

DATA SHEET FOR PARTICULATE MATTER SCAQMD METHOD 5.1

DATE	SAMPLED:	04/20-21/04
DATE	EXTRACTE	D: 05/03/04

RUN #2

	SAMPLE ID	BEAKER/ FILTER ID	VOLUME	INITIAL	FINAL	NET WEIGHT(g)
A - FILTER CATCH FILTER ACID FILTER SULFATE	W07039-F#1-EXH-M5-PF2	Q00128	NA	0.1514	0.1527	0.0013 0.0000
B - PROBE CATCH PROBE ACID PROBE SULFATE						0.0000 0.0000 0.0000
C - IMP.CATCH(INSOL) INSOLUBLE ACID INSOLUBLE SULFATE	W07039-F#1-EXH-M5-EF2	Q00131	730	0.1509	0.1516	0.0007 0.0000 0.0000
D - IMP. CATCH (SOL) SOLUBLE ACID SOLUBLE SULFATE	W07039-F#1-EXH-M5-R2	040108	730	29.5228	29.5332	0.0104 0.0000 0.0000
E - ORGANIC EXTRACT	W07039-F#1-EXH-M5-MC2	040110	125	29.7310	29.7336	0.0026

	un de de de de	
TOTAL PARTICULATE	(A+B+C+D+E)	0.0150
SOLID PARTICULATE	(A+B+C+D)	0.0124

CHAIN OF CUSTODY RECORD

Client/Project N	lame			Project	Location					,					7
waste	Book	lley	LFRC	50	~ Valle	u .	JA.				Α	NALYS	SES		′
Project No.		1		Field Logb	ook No.	1 -1 -	Y.X		/	7	7	7	7	7 /	
WO'T DI	39							1	/ /						
Sampler. (Signa	eture)	, il	~	Chain of Cus	tody Tape No.		· · · · · ·	16		/ ,	/ ,	/ ,	/ ,		
Sample No./ Identification	Date	Time		ample nber	Type Sam		S. S							REMA	.RKS
W07031-25	1-m5	-DE-	ſ			<u></u>	ĺχ			Í	Í -		ĺ		
WW 7031-F	E/-mc	-12-1		-			14					<u> </u>			
NO1031-F	4 mc	[-175-2	,				7								
MOADEL-E	1 unc	5-R-Z				***************************************	7								
				1											
							<u> </u>								
Relinguished by:	(Signature	·)	·nc		Date	Time (SOO)	Recei	ved by	: (Sign	ature)	I <u>,</u> _	<u> </u>		Date	Time
Relinquished by:	(Signature	?)			Date	Time	Recei	ived by	ı: (Sign	ature)	·			Date	Time
Relinquished by:	(Signature	·)			Date	Time	Received for Laboratory: (Signature) Date Time								
Sample Disposal	Method:				Disposed	of by: (<i>Sign</i>	ature)						-	Date	1800 Time
							•								
SAMPLE COLLE	CTOR			· ·	ANALYTIC	AL LABOR	ATORY		-						-
HORIZON 996 Lawre				CES, INC											
Newbury	Park, CA	91320													
(805) 498-8	3781 Fax ((805) 498-3	173											Nº 74	483
	······································		-							 -				<u>L</u>	

APPENDIX D - Field Data Sheets

VELOCITY DATA SHEET - METHOD 2

Facility:	Bruckey L=
Source:	46 Fluc #1
Job #:	W07-039
Date:	04/20/04

Baro. Press:	29.23
Static Press:	65"420
Pitot Tube #:	Zel STID
	/ 1-1

D ₁ upstream:	_6.6
D₁ downstream:	8.7
Stack Diameter:	13.28

Operator:

Pitot Tube Type: Magnahelic:

D₁ downstream:	
Stack Diameter:	<u>/3</u>

Leak Check

Run #:	1

· Initial:	Final:
	1//
//	10
/	/

Side View

Point #	Position in.	Velocity Head in. H₂O	Stack Temp	Cyclonic Flow Angle
A-6	12.7	1.6	160	
5	11.8	1.3	166	
4	9.3	1.3	164	
3_	3.9	1.3	165	
2_	1.9	1.3	168	
	0.6	1.3	166	
13-6		1.4	166	
6		1.4	165	
4		1.3	165	
3		1.4	168	
2		1.3	16<	
		1.4	168	
				
	· · · · · · · · · · · · · · · · · · ·			
		VΔP=1.1660	T _s = 164.0	
Average		VΔP=1.1660 -	T= 166.0	∠=

Top View

VELOCITY DATA SHEET - METHOD 2

pa 1104	10.00	/ -	_	·		
Facility:		1 LICEL Baro	o. Press:	<u> </u>	D ₁ upstream:	6.6
Source:		-1 - Jule + Stat		44,7 4,C	D ₁ downstream:	7 90
Job#:	woz-		t Tube #:	GTB 24"	Stack Diameter:	13.20
Date:	<u>04 zyb</u>		t Tube Type:	STO	Leak	Check Final:
Operator	: 12C	Mag	nahelic:	NO3062471	62 Initial:	Final:
Run #:					1/	1/
Point #	Position in.	Velocity Head in. H ₂ O	Stack Temp °F	Cyclonic Flow Angle	Side	View
1	M.		100	Aligie	\	
12-6	<u>√</u>	101.6	168		SOF	ROU 2
4	V	0,0001.7	158			Q .
3	V	0.821.6	188			the second section of the second section of the second section of the second section s
2	H.	11 1.6	158			_
		1.6	168			The state of the s
3-6		1.4	158			
5		1.5	158			The state of the s
4		1.6	168			
3		1.4	168			parevacejusod terminostinos
2	•	1.1	166			
<u> </u>		1.4	<u> </u>		Top	
<u> </u>						<u>े हैं</u> 12 स
			·			
						general state of
			· · · · · · · · · · · · · · · · · · ·			
						() () () () () () () () () () () () () (
						5 5
						J
						/ 1
						2 · · · · · · ·
		ac	W			
Average		VAP=1.7138	T,=168,0	∠=		green control

Exercismones		Λi]	PAI	RTICULA	ΓE FIELD DA1 '≠	<u> </u>					
	DATE O Y	METER BOX NO. METER BOX NO. METER AH @ 1, 5,44 Y= 1,007 PROBE I.D. NO. N. A.			METER ΔH @ /, Y= / ₀ :				AN BA	íbient Ro. Pri	MOISTU TEMPER	ATURE 9.23	HA		
	SOURCE		L I	<u>vet</u>		NOZZLE DIAMETER, ir			in. WA			ATIC PR MAGRA	ESSN	EX UZ	7
Managaran Managa	SAMPLE B	- W. C	~ ~	0		PRO	BE F	DIAMETER, in HEATER SETT	TING HA	-		1	PRE TES	T LEAK CHI	ECKS
	TIME STA	RT	(60O)			ΔСр	FAC	BOX SETTING	GNA		ME PIT	TER <u><</u> OTS_	<u>0.001</u> (a	@ <u>/レ</u>	in. Hg n. Hg
			•	-	<u></u>	FILT	ER 1	40	N/A-		OR	SAT			
factorial to resign	P#	TIME	T _s	Δ) in H		√∆P \		AH in H₂O	Vm ft ³	T _{m N}	T _m OU	n c	°F	IMP. OUT °F	VAC. (in Hg)
Market Comment	6	00	NA	N	٧.	NA		1.5	605386	70	49	<u> </u>	A	62	15
187738		10		1		1		1.	612.81	छद			7,	5)	12
		30 30		1				1.5	620.54	80	BC)		54	え こ
واست	-/	40		+				1.0	627.0	90	180			53	12
de la company	-/	50		 				1.6	690 F	91	82			28	3 <u>-</u>
The state of the s		60		+			,	7. 0	10020		100	_	\longrightarrow		
জাক ডিট		1	•				•			<u> </u>	 	\top		 	
N Long 2 1 Table				_											
				 						<u> </u>					
				-						 					<u> </u>
				 									*		
Control of the Contro					·						+	 -			
No. 3. Company							**						$\neg \uparrow$		T .
in the second	ļ														
Estate Contraction					···-					-	-				
				 	-+					 		+			
force const									·····						
rance															
person.			,	 									\bot		
Programme A						····					<u> </u>	\dashv		— <u>,</u>	
F 7								- NO			\alpha				
With a straight of the straigh	Avg.							1.60	4486		PS	ol -			
	TIME END	= 1 10	20						11013	<u> </u>				:	
Williams milital				T	au \$7-1		Ī				•				
		ne of Liquid r Collected		- I absud	er Volun	1 <u> </u>		Silica Gel Wght.		<0.0			CHECK	in. Hg	
Contraction of the Contraction o	,,,,,,,	- Contests	1	2	3	4	<u> </u>	5	Pitots Orsat		@			_in. Hg	
- [Final	139	100	3		0	94	Orsat N	Meas.	Time	CO,	0,	СО	N ₂
production on		Initial	100	100	0		a	8()	· · · · · · · · · · · · · · · · · · ·	1			 		
term	Liqui	d Collected	 -	1	1		-	اسلار:	•	,			1-	+	

2

3

D,

D,

D,

Average 059

Nozzle Cal

HORIZON AIR MEASUREMENT SERVICES, INC

Total Vol. Collected

The special

PLANT VICE METER BOX NO. ASSUMED MOISTURE, % 1.6144 DATE METER ΔH @_ AMBIENT TEMPERATURE BARO. PRESS. LOCATION .0076 OPERATOR NO PROBE I.D. NO. STATIC PRESS. SOURCE PORT TO SAMPLE BOX NO. NOZZLE DIAMETER, in. NA NOMAGRAPH INDEX STACK DIAMETER, in. PROBE HEATER SETTING PRE TEST LEAK CHECKS HEATER BOX SETTING METER LOW @ 10 in. Hg TIME START_ Δ Cp FACTOR_ PITOTS @_ in. Hg FILTER NO. ORSAT TIME T_{s} P# T_{m IN} °F ΔΡ √AP ΔΗ $V\mathfrak{m}$ T_{to} OUT OVEN IMP. VAG in H,O in H,O ft' F OUT °F F · (in Hg/ CO NA NA MA w 60 ω 30 40 50 60 56 1.60 Avg. TIME END = Impinger Volume Silica Gel POST TEST LEAK CHECKS Meter LO.001 Volume of Liquid Wght. in. Hg Water Collected Pitots in. Hg Orsat 110 Final Orsat Meas. Time CO, CO Initial ∞ 30 Liquid Collected 10 2 Total Vol. Collected 3 Nozzle Cal Average HORIZON AIR MEASUREMENT SERVICES, INC

PARTICULATE FIELD DATA

才

SCOLUMN CO.	PARTICULA PARTICULA	TE FIELD DATA			
PLANT Browles Live	METER BOX NO	4	ASSUME	O MOISTURE, %	10
DATE (24) ZOLOY) LOCATION Star Valley), (1)	METER ΔH @ Y=	1.707	AMBIENT	TEMPERATURE ~	- / /
OPERATOR COM	PROBE I.D. NO.	10-2	BARO. PR STATIC PI	ESS. 29.25 RESS00.01	10
RUNNO - SCAO MIS MOUNT	NOZZLE DIAMETER,	in. 1.090	NOMAGR	APH INDEX	
SAMPLE BOX NO.	PROBE HEATER SE	TTING U IA	_	PRE TEST LEAK &H	
TIME START 1-229 1600	HEATER BOX SETT Δ Cp FACTOR	NG N/A	METER PITOTS		in. Hg n. Hg
il il	FILTER NO.	クロスキ	ORSAT	1 24 3	ng
P# TIME T ₅ AP	1 /45		: 1		7
AT in H.O.	√∆P ∆H in H ₂ O	Vm T _{mb} s	T_OUT (OVEN IMP. °F OUT °F	VAC.
1529	12 3.6			001 F	(in Hg)
7017 0.01	36	1973810 (A	69	UA 68	-
1) 25 1536 0.01	3.6	9763 FI	65	60	23
10 60/64/0.01	3.6	RAS A	69	58	13
	3.6	881.3 72	69	- GY	5
	3.6	EB38 72	69	57	6
4 16 180 1818 0.01	36	5563 F3	69	€8	5
	3.6	868.8 74	40	69	5
9 20 154 0.01	3.6	871.3 44	770	56	5
195 225 195,001	3.6	075.7 75	40	56	5
10.0 1504 0.01	3.6	600 T	70	<u> 53</u>	5
16, 27.6 1819 0.01	3.6	891.1 78 900.0 76		- 56	5
13-17 300 1528001	36	400.0 76 904.018 4	70	, 56	5
11 32-1526 0.01	3.6	007.1 72	170	60	5
10 360 154 0.01	3.6	909 8 7	70	48	
9 541 1530 0.0	3.6	912/21 74	70	56	5
1 400 192 0.01.	3,6	9184 78	150	38	\$
	3.6	97.9 75	120	57	5
6 460 1518 0.01	3.6	920.7 48	7	59	5
0.01	3.6	923.2 75	41	60	35-
7 000 30 00	5.6	92591 75	K)	60	5
3 52 1620 001	3.6	928.4 7-6	(4)	64	-
7 9601619 0.01 1 51,0579 0.01	36	931.3 75	121	58	5
(4)	3.6	4339 74	7-1	58	S
(5)7.	1000	930612	J. Vie		
TIME END = 100 100	0.100 3.60	62.802	720		
1 HVIE END	The TRE			:	
Imninger V		1			
Volume of Liquid	olume Silica Gel Wght.	Meter Loloc	POST TEST LEAD		
Water Collected		Pitots/	<u> </u>	in. Hg	
	3 4 5	Orsat/			
Final 200 112 8	3 275	Orsat Meas,	Time CO,	O ₂ CO	N,
Initial 100 100 (261			-, 50	
		1			
Liquid Collected 100 12 8		W 2.			
Total Vol. Collected	134.0	3			

Nozzle Cal

1.090 1.090 1.091

1.080

HORIZON AIR MEASUREMENT SERVICES, INC.

PLANT Standay IFRC

DATE OHIZOLOH

LOCATION SCH Uchtey CA

OPERATOR My Cept, Two

SOURCE Plus OF

RUN NO. 2 - SCHOMA C. I

SAMPLE BOX NO. (1-2)

TIME START (176)

PARTICULATE FIELD DATA

METER BOX NO.

METER ΔΗ @ 1.700 7

Y= 10055
PROBE I.D. NO. 10 - 2
NOZZLE DIAMETER, in. 109
STACK DIAMETER in 119

STACK DIAMETER, in. 1944
PROBE HEATER SETTING DIAMETER BOX SETTING DIAMETER BOX SETTING DIAMETER NO. (1912)

ASSUMED MOISTURE, %

AMBIENT TEMPERATURE YEO CO
BARO, PRESS. 79.23

STATIC PRESS. 70.07

NOMAGRAPH INDEX 300

PRE TEST LEAK CHECKS

METER 1 0 0 0 in. Hg

PITOTS 2 0 3 in. Hg

ORSAT 1

	T										
P#	TIME	T _s	ΔP in H ₂ O	√ Δ₽	ΔH in H ₂ O	Vm ft ³	T _{m IN} °F	T., OUT	OVEN	IMP. OUT °F	VA (in Hg)
4-12	06	1490	0.01		5.6	936,936	165	65	NA	52	4
11	25		0.01		36	939.7	60	68	 /- -	148	7
10	5.0	1803	001		3.6	942.3	403	65	 	30	
9	7.0	1497	0.01		3.6	9460	1000	68	 	50	<i>\F</i> .1-
\mathcal{B}	10.0	1492	0.01		3.6	947.3	70	65		52	7
3	12.	1623	0.01		36	960.2	40	65		52	
6	16.0	1550	0.01		3.6	9529	N.	60	 	53	孝
	17	1609	0.01		3.6	9666	71	66		53	学
4	SOX	1630	001		36	958.3	72	66		52	专门
3	32.	1825	0.01		3.6	961.0	172	66	 	22	4
2	メぞり	150	0.01		3.0	963.6	72	66		53	7
	ンなく	1600	0,01		3.6	aldas	42	66	,	53	#
3-12	20.0	1518	0.01		3.60	4169.09 F	65	60	· · · · · · · · · · · · · · · · · · ·		+
X.	32.4	1546	0.01		36	971.7	66	62		35	
10	360	1544	001		36	9745	67	65			7
9	34.1	1926	0.01		3.6	977.0	69	62		49	-
8	40.0	1533	0.01.		36	CITA D	40	65		81	
7	42.	1924	0.01		3.6	9874	170	65			士
6	46.0	1521	0.01		36	90,5.0	40	68		51	
8	47.5	15A	001		3.6	GP57.6	7	65	- 	6	7
y	500	1532	0.01		3.6	990.4	41	66		52	7 7
3	525	1542	0.01		3.6	193.0	71				13 13
Z.	450	1508	00		3.6	445.6		65		52	王
7	57.6		0.01		3.6	498,4	4 10	65		2	# [
	600	M	<u> </u>		J 10	001245	+0	65		52	7
A-1/-	T	15201		0.1000	2 / .			16.0	<u> </u>		
Avg.		7/ =		0.1000	3.60	64.310		67.6	<u> </u>		
	16	70-4			We	VZ		ne			

Volume of Liquid Water Collected		Impinge	ie	Silica Gel Wght,	
Mater Collected	1	2	3	4	5
Final	198	108	4		284
lnitial	100	100	O		279
Liquid Collected	98	8	4		10
Total Vol. Collected					116.0

Meter O.091 POST TEST LEAK CHECKS
Pitots Orsat POST TEST LEAK CHECKS
in. Hg

Orsat Meas,	Time	CO,	0,	со	N ₂
1					
2					
3	,			C (H. A. P. A.
Nozzle Cal	D,	D,	D,	υC	rage

HORIZON AIR MEASUREMENT SERVICES, INC.

TOTAL COMBUSTION ANALYSIS SCAQMD METHOD 25 FIELD SAMPLING DATA SHEET

Job #:	<u> アナン *</u>	<u>>4</u>		
Facility: 53	ache	<u> </u>	ستر	
Location:	2~	York	ley	CA
Date: (24)	30/9	24		.
Operator:	ne	-		

SAMPLE A

Tank #:	Trap #:	U	
Initial Vacuum:	2.6		
Final Vacuum:			
Start Time:			

Control Device: _	LKG Flore 11
Sample Location	: Jalet
Ambient Temp.:	N804
Baro. Pressure:	29.33 24.25
	WC:
	1/5

_	SAMPLE B	1.
Tank #:	Trap #:	<u>41</u>
Initial Vacuum:	2.6	,
Final Vacuum:		
End Time:		

TIME (min.)	VACUUM ("Hg)	FLOW (cc/min)
₩ 00 .	29	100
05	27.8	100
10	26	100
15	24	100
20	22.5	100
25	21	100
30	19.6	100
35	18	100
40	16.4	100
45	18	100
50	13.6	100
55	12	100
C 60	9	

TIME (min.)	VACUUM ("Hg)	FLOW (cc/min)
00	29	G01:
05	245	100
10	26	100
15	24	100
20	77	100
25	20.8	100
30	19	100
35	17.	100
40	16	100
45	14.	100
50	13	100
55	10	100
60	8	

LEAK	RA7	E
-------------	-----	---

Pre Test : Post Test:

TOTAL COMBUSTION ANALYSIS SCAQMD METHOD 25 FIELD SAMPLING DATA SHEET

Job #: <u>607-655</u>
Facility: Wm Bradley
Location: Sur Valley
Date: 4 20 04
Operator: TV

Control Device: _	Flyre #1
Sample Location:	OUTLET
Ambient Temp.: _	~ 80° P
Baro. Pressure:	29.25

SAMPLE A

Tank #: <u>Six</u>			Trap #: 15 H
Initial Vacuum:	30°	1	2.5 teres
Final Vacuum: _	6"	<u> </u>	
Start Time:			

SAMPLE B		
Tank #: 52 (Trap #: <u>17 H</u>	
Initial Vacuum: 25, 1/2	" 25 topse	
1.1/		

Final Vacuum: _	6"	
End Time:		

TIME (min.)	VACUUM ("Hg)	FLOW (cc/min)
160000	30"	
05	25	
10	26	
15	24	
20	22	
25	20	
30	18	
35	16	
40	انر	
45	12	
50	10	
55	8	
(400 ₆₀	6	

TIME (min.)	VACUUM ("Hg)	FLOW (cc/min)
00	292	
05		
10	2% 24	
15	24	7
20	22	Į.
25	20	
30	18	
35	16	
40	14	
45	12	
50	91/2	Ipper and the second
55	91/2 71/2	
60	6	

LEAK RATE

Pre Test:	//	w
Post Test:	11	٠,٠

CEM TEMPERATURE DATA

Facility:_	WM	Brudley
Joh No ·	WOT-	-039

Date: 04 20 04

Run #: 1

Source: Flane #1

Probe Temp Settings: >250°F

Heated Line Temp Settings: >250°F

		TI	EMPERATURES O											
	Time	Condenser Outlet	Probe	Teflon Line										
1	RI cro	34	>2500	SISUPF										
2	10	35		(
3	20	35												
4	చెం	36												
5	40	36												
6	50	34												
7	. 60	36												
8	D2 10	35												
9	مد	36												
10	<i>3</i> 6	36												
11	40	36												
12	50	34.												
13	60	31	1	4										
14														
15														

APPENDIX E - Calibration Information

Control Box Calibration Data

Date:

04/02/04

Calibrated by:

Ferodie Jesus Orara Torres

Meter Box Number:

4

Barometric Pressure:

29.10

Wet Test Meter Cf:

0.9977

	Gas	Volumes		Te	mperatu	res	Time	Y	Н@
Orifice setting (H)	Wet Test (cu.ft)	Dry Gas Initial (cu.ft)	Dry Gas Final (cu.ft)	DGM Initial (°F)	DGM final (°F)	WTM (°F)	(min)		
0.5	25.583	1040.859	1066.025	70	71	71	60	1.0110	1.6012
1.0	9.993	1030.875	1040.706	69	71	71	17	1.0087	1.6865
1.5	31.808	999.057	1030.666	70	70	71	45	0.9992	1.7446
2.0	17.831	980.951	998.611	71	73	70	22	1.0056	1.7601
3.0	21.313	959.500	980.562	70	73	70	21	1.0053	1.6822
4.0	61.283	898.889	959.264	65	73	69	53	1.0030	1.7296
							_	 -	
					A	VERAG	E	1.0055	1.7007

Reviewed by:

067

Control Box Calibration Data

Date:

04/01/04

Calibrated by:

Ferodie Jesus Orara Torres

Meter Box Number:

7

Barometric Pressure:

29.15

Wet Test Meter Cf:

0.9971

	Gas	Volumes		Те	mperatu	res	Time	Υ	Н@
Orifice setting (H)	Wet Test (cu.ft)	Dry Gas Initial (cu.ft)	Dry Gas Final (cu.ft)	DGM Initial (°F)	DGM final (°F)	WTM (°F)	(min)		
0.5	10.860	481.057	491.805	77	79	72	24	1.0171	1.4058
1.0	10.554	470.230	480.784	79	81	72	17	1.0091	1.4881
1.5	23.823	446.051	469.930	79	82	71	32	1.0083	1.5450
2.0	30.126	415.545	445.746	79	83	71	35	1.0078	1.5396
3.0	16.789	398.167	415.011	79	84	71	16	1.0054	1.5526
4.0	13.344	384.495	397.891	76	83	71	11	0.9981	1.5553
							_		<u> </u>
						AVERAC	SE .	1.0076	1.5144

Reviewed by:

063

Magnehelic Gauge Calibration Data

Range:

0.0-1.00*

Date:

01/26/04

Calibrated by:

Ferodie Jesus Orara Torres

BAROMETRIC PRESURE:

29.20

Reference:

0.0-10.0" MANOMETER

SYSTEM

LEAK CHECKS (Y/N):

Υ

POINT

LEAK CHECK (Y/N):

Magnahelic Box #

1

Serial #

R970865M62

MAG	MAN R1	MAN R2	MAN R3	MEAN	MEAN/MAG
0.20	0.20	0.20	0.20	0.201	1.005
0.40	0.40	0.40	0.40	0.400	1.000
0.60	0.60	0.60	0.60	0.600	1.000
0.80	0.80	0.80	0.80	0.798	0.997
1.00	1.00	1.00	1.00	1.000	1.000

Correction Factor:

1.0004

Checked by:_

STACK TEMPERATURE SENSOR CALIBRATION DATA- APEX PROBE ASSEMBLIES

Date: 81/95-07/94 Calibrated by:

Ferodie Jesus Orara Torres and Craig Moran

THERMOCOUPLE ID:

	ICE WATER					ABSOLUTE T DIFF., %				BOILING WATER						SOLU DIFF.			BOILING OIL						ABSOLUTE T DIFF. %																							
		REF	_	TC			TC			TC			TC			TC			TC			TC			TC						_	REF	_	_	TC	_				_	REF	_	_	TC	_	_		
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2 3		1	2	3	1	2	3																					
Stainles	s Steel Pi	robes										_		·	_		·				•			_																								
3-1	34	34	34	36	37	37	-0.4	-0.6	-0.6	212	212	212	212	212	212	0.0	0.0	0.0	448	440	445	445	447																									
4-2	34	34	34	34	35	35	0.0	-0.2	-0.2	212	212	212	214	214	214					448	448	446	447	447	0.2	0.1	0.1																					
4-3	34	34	34	34	35	35	0.0	-0.2	-0.2	212	212	212	213			-0.3	-0.3	-0.3	430	430	430	429	430	431	0.1	0.0	-0.1																					
6-2	33	33	33	34	33	33	-0.2	0.0	0.6	205	205			214	214	-0.1	-0.3	-0.3	450	450	450	456	452	457	-0.7	-0.2	-0.8																					
6-3	34	34	34	36	36	35	-0.4	-0.4	-0.2	212		205	206	206	206	-0.2	-0.2	0.0	465	465	465	463	462	463	0.2	0,3	0.2																					
6-4	33	33	33	34	35	34	-0.2	-0.4		_	212	212	212	212	213	0.0	0.0	-0.1	432	432	432	439	438	438	- 0.8	-0.7	-0.7																					
A6-5	34	34	34	34	34	34	0.2		-0.2	212	212	212	216	216	216	0.2	-0.6	-0.6	440	440	440	432	433	435	0.9	0.8	0.6																					
A8-1	34	34	34	34	34	34		0.0	0.0	212	212	212	215	214	214	-9.4	-O.3	-0.3	540	540	540	535	537	538	0.5	0.3	0.2																					
A8-2	34	34	34	34	34		0.0	0.0	0.0	212	212	212	214	215	214	-0.3	-0.4	-0.3	542	542	542	538	539	539	0.4	0.3	0.3																					
10-1	34	34	34			34	0.0	0.0	0.0	212	212	212	215	215	215	-0.4	-0.4	-0.4	542	542	542	545	545	545	-0.3	-0.3	-0.3																					
16-1	32			35	35	35	-0.2	-0.2	-0.2	212	212	212	211	211	210	0.1	0.1	0.3	540	540	540	540	539	539	0.0	0.1	0.1																					
M17-1		32	32	33	32	32	-0.2	0.0	0.0	212	212	212	212	212	212	0.0	0.0	0.0	529	529	529	529	529	530	0.0	0.0	-0.1																					
M17-2	33	33	33	34	33	33	-0.2	0.0	0.0	212	212	212	214	213	213	-0.3	-0.1	-0.1	450	450	450	448	445	447	0.2	0.4	0.3																					
	35	35	35	38	38	38	-0.6	-0.6	-0.6	212	212	212	214	213	213	-0.3	-0.1	-0.1	450	450	450	458	446	447	-0.9	0.4	0.3																					
M17-3	34	34	34	35	34	34	-0.2	0.0	0.0	200	200	200	198	199	200	0.3	0.2	0.0	460	460	460	458	461	460	0.2	-0.1	0.0																					
Inconel																																																
10-2 Inc	34	34	34	34	34	34	0.0	0.0	0.0	212	212	212	211	211	210	0.1	0.1	0.3	540	540	540	540	539	539	0.0	0.1	0.1																					
6-1 Inc	32	32	32	33	33	32	-0.2	-0.2	0.0	212	212	212	213	213	213	-0.1	-0.1	-0.1	541	541	540	541	541																									
Loose The	∍rmocoup	le																0.1	31,	J11	340	341	541	540	0.0	0.0	0.0																					
6-8	33	33	33	34	33	33	-0.2	0.0	0.0	212	212	212	211	212	212	0.1	0.0	0.0	450	450	45.0																											
6-7	33	33	33	34	33	33	-0.2	0.0	0.0	200	200	200	198	199	198				450	450	450	452	453	452	-0.2	-0.3	-0.2																					
7-2	34	34	34	34	34	33	0.0	0.0	0.2	212	212	212	211	211		0.3	0.2	0.3	465	465	465	461	465	463	0.4	0.0	0.2																					
8-3	33	33	33	34	33	33	-0.2	0.0	0.0	212	212	_			211	0.1	0.1	0.1	450	450	450	451	451	451	-0.1	-0.1	-0.1																					
Note: If a	hsoluto ta	monrel					-		5.5	L16	612	212	211	212	212	0.1	0.0	0.0	450	450	450	451	451	450	-0.1	-0.1	0.0																					

Note: If absolute temperature values of the reference thermometer being calibrated and the stack temperature sensors agree within 1.5 percent at each of the three calibration points.

Praxair 5700 South Alameda Street Los Angeles, CA 90058 Telephone: (325) 585-2154

Facsimile: (714)542-6689

CERTIFICATE OF ANALYSIS

CUSTOMER

HORIZON AIR MEASUREMENTS

DATE

03/11/04

P.O NUMBER

REF. NUMBER

15453700

REQUESTED COMPOSITION

GAS

CONCENTRATION

CARBON DIOXIDE

OXYGEN

12 %

NITROGEN

BALANCE

ANALYTICAL ACCURACY

±0.02%abs

ANALYTICAL METHOD

INSTRUMENT

METTLER ID5, S/N:1865166

ANALYTICAL PRINCIPLE

Gravimetric

Values not valid below 150 psig.

THIS CYLINDER NO. CYLINDER PRESSURE

SA 10110

2000 PSIG

CERTIFIED CONCENTRATION CARBON DIOXIDE

EXPIRATION DATE

03/11/07

OXYGEN

11.98 %

CLASSIFICATION

PRIMARY STANDARD

NITROGEN

BATCH NUMBER

N/A

BALANCE

LOT NUMBER

ANALYTICAL ACCURACY

±0.02%abs

109331207

EV NICDOXP1-AS

PART NUMBER

CYLINDER SIZE AS CGA 590

ANALYZED BY

CERTIFIED BY

Information contained herein has been prepared at your request by qualified expens within Prayair Distribution, Inc. While we believe that the information is ecourate within the timits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the

Praxair 5700 South Alameda Street Los Angeles, CA 90058 Telephone: (323) 585-2154 Facsimile: (714)542-6689

CERTIFICATE OF ANALYSIS

CUSTOMER

HORIZON AIR MEASUREMENTS

DATE

09/15/03

P.O NUMBER

REF. NUMBER

55946400

REQUESTED COMPOSITION

GAS

CONCENTRATION

CARBON DIOXIDE

12 %

NITROGEN

BALANCE

ANALYTICAL ACCURACY

±1 %

ANALYTICAL METHOD

INSTRUMENT

ANALYTICAL PRINCIPLE

METTLER ID5, S/N:1865166

GRAVIMETRIC

Values not valid below 150 psig.

THIS CYLINDER NO.

SA 1715B

CERTIFIED CONCENTRATION

CYLINDER PRESSURE

2000 PSIG

CARBON DIOXIDE

11.98 %

EXPIRATION DATE

12/31/06

NITROGEN

BALANCE

CLASSIFICATION

PRIMARY STANDARD

ANALYTICAL ACCURACY

±1 %

BATCH NUMBER

N/A

LOT NUMBER PART NUMBER 109232903

EV NICD12P-AS

CYLINDER SIZE AS CGA 580

145 CFT

ANALYZED BY

JACK FU

CERTIFIED BY

VICTOR DOTAN

Information contained herein has been prepared at your request by qualified experts within Praxeir Distribution, Inc. While we believe that the information is accurate within the limit the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of

Prayair 5700 South Alameda Street Los Angeles, CA 90058 Telephone: (323) 585-2154 Facsimile: (714)542-6689

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER

HORIZON AIR MEASUREMENTS

P.O NUMBER

REFERENCE STANDARD

COMPONENT

NITRIC OXIDE GMIS

NIST SRM NO. vs.SRM#1683

CYLINDER NO.

CC 95448

CONCENTRATION

22.4 ppm

ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

1. COMPONENT NITRIC OXIDE GMIS ANALYZER MAKE-MODEL-S/N Thermo Env. 42H S/N 42H-44979-273 ANALYTICAL PRINCIPLE Chemiluminescence LAST CALIBRATION DATE FIRST ANALYSIS DATE 09/01/02 08/28/02 SECOND ANALYSIS DATE **Z** 0 09/20/02 R 22.3 C 20.1 CONC. 20.2 **Z** 0 R 25.8 R 22.3 C 23.4 CONC. 20.3 **Z** 0 C 20.2 CONC. 20.3 R 25.6 **Z** 0 **Z** 0 C 23.1 CONC. 20.2 C 20.2 CONC. 20.2 R 22.4 \mathbf{z}_{o} C 23.4 R 25.8 CONC. 20.3 U/M ppm MEAN TEST ASSAY 20.2 ppm U/M ppm MEAN TEST ASSAY 20.3 ppm

> NOx values for reference only. All values not valid below 150 psig.

THIS CYLINDER NO.

CC 150203

CERTIFIED CONCENTRATION

HAS BEEN CERTIFIED ACCORDING TO SECTION OF TRACEABILITY PROTOCOL NO.

EPA-600/R97/121

NITRIC OXIDE

20.2 ppm

PROCEDURE

Rev. 9/97

NITROGEN

BALANCE

CERTIFIED ACCURACY ± 1

МОх

% NIST TRACEABLE

20.4 ppm

CYLINDER PRESSURE

2000 PSIG

CERTIFICATION DATE

09/20/02

EXPIRATION DATE

09/20/04

TERM 24 MONTHS

ANALYZED BY

MICHAEL TSANG

CERTIFIED BY

PHU TIEN NGUYEN

IMPORTANT
Information contained herein has been prepared at your request by qualified expents within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods simpleyed and is complete to the extent of the specific analytical methods of the property of th the analytical methods employed and is complete to the extent of the specific analytes performed, we make no warranty or representation as to the suitability of the use of the

Praxair 5700 South Alameda Street Los Angeles, CA 90058 Telephone: (323) 585-2154 Facsimile: (714)542-6689

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER

HORIZON AIR MEASUREMENTS

P.O NUMBER

8197

REFERENCE STANDARD

COMPONENT

NIST SRM NO.

CYLINDER NO.

CONCENTRATION

NITRIC OXIDE

vs.SRM2628a

CC 137315

9.50 ppm

ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

1.			COXIDE			ANALYZ	ER MAKE	-MODEL-S/N	Thermo Env. 42H	S/N 42H-44979	-273
	ANALYTICAL F			CHE	MILUMINES	ENCE			LAST CALIBI	RATION DATE	06/02/03
	FIRST ANALYS			05/	05/03				SECOND ANA	LYSIS DATE	06/06/03
	Z 0	R	10.74	C	11.19	CONC.	9.90	Z 0.01	R 9.34	C 9.73	CONC. 9.90
	R 10.70	Z	0	C	11.20	CONC.	9.94	R 9.37	Z 0.01	C 9.80	CONC. 9.94
	Z 0	С	11.21	R	10.72	CONC.	9.93	· Z _{0.01}	C 9.83	R 9.37	CONC. 9.97
	U/M ppm			N	MEAN TEST	Γ ASSAY	9.92	U/M ppm	n	MEAN TES	T ASSAY 9.94

NOx = 9.93 ppm (For reference only). All values not valid below 150 psig.

THIS CYLINDER NO.

CC 167634

CERTIFIED CONCENTRATION

HAS BEEN CERTIFIED ACCORDING TO SECTION

EPA-600/R97/121

9.93 ppm

OF TRACEABILITY PROTOCOL NO.

Rev. 9/97

NITROGEN

PROCEDURE

+ 2

BALANCE

CERTIFIED ACCURACY

% NIST TRACEABLE

NITRIC OXIDE

CYLINDER PRESSURE

2000 PSIG

CERTIFICATION DATE

06/06/03

EXPIRATION DATE

06/06/05

TERM 24 MONTHS

ANALYZED BY

JOSEPH CHARLES

CERTIFIED BY

MICHAEL TSANG

IMPORTANT

Information contained herein has been prepared at your request by qualified experts within Fraxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event s the liability of Praxair Distribution, Inc., arising out of the use of the information contained herein exceed the fee established for providing such information.

Praxair 5700 South Alameda Street Los Angeles, CA 90058 Telephone: (323) 585-2154 Facsimile: (714)542-6689

CERTIFICATE OF ANALYSIS

CUSTOMER HORIZON AIR MEASUREMENT

DATE

01/14/04

P.O NUMBER

8305

REF. NUMBER

58531700

REQUESTED COMPOSITION

GAS

CONCENTRATION

NITROGEN DIOXIDE (AS NOX)

19 ppm

NITROGEN

BALANCE

ANALYTICAL ACCURACY ± 1 %

NO

ANALYTICAL METHOD

INSTRUMENT

Thermo Env. 42H S/N 42H-44979-273

ANALYTICAL PRINCIPLE

Chemiluminescence

VALUES NOT VALID BELOW 150 PSIG. SRM UNCERTAINTY ± 1 % NO VALUE IS FOR REFERENCE ONLY.

THIS CYLINDER NO. CYLINDER PRESSURE

CC 118326

2000 PSIG

EXPIRATION DATE

07/14/04

PRIMARY STANDARD

N/A

PART NUMBER

CLASSIFICATION

BATCH NUMBER

LOT NUMBER

109316003

EV NINX19MP-AS

CYLINDER SIZE AS CGA 660

CERTIFIED CONCENTRATION

NITROGEN DIOXIDE (AS NOX)

18.9 ppm

NITROGEN

BALANCE

ANALYTICAL ACCURACY ± 1 %

0.5 ppm

ANALYZED BY

CERTIFIED BY

MICHAEL TSANG

Information contained herein has been prepared at your request by qualified expens within Praxeir Distribution, Inc. While we believe that the information is accurate within the limits of the enalytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and disk of the user

Praxair 5700 South Alameda Street Los Angeles, CA 90058 Telephone: (525) 585-2154 Facsimile: (714)542-6689

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER

HORIZON AIR MEASUREMENTS

P.O NUMBER

8078

REFERENCE STANDARD

COMPONENT

NIST SRM NO.

CYLINDER NO.

CONCENTRATION

CARBON MONOXIDE GMIS

vs.SRM#1679

CC 81440

99.1 ppm

NITRIC OXIDE GMIS vsSRM#1684b

CC 115392

100.0 ppm

ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

1. COMPONENT CARBON MONO ANALYTICAL PRINCIPLE	OXIDE GMIS AN	ANALYZER MAKE-MODEL-S/N Siemens Ultramat SE S/N A12-729					
FIRST ANALYSIS DATE	12/02/02			LAST CALIE SECOND ANA	11/14/02 12/10/02	# T	
R 99.1 Z 0.0	_	ONC. 80.2 ONC. 80.2	Z 0.0 R 99.1	R 99.1 Z 0.0	C 80.3	CONC. 80.3	20 <u>4</u> .
Z 0.0 C 80.2 U/M ppm	R _{99.1} CC MEAN TEST AS	ONC. 80.2	Z 0.0	C 80,2	C 80.2 R _{99.1}	CONC. 80.2 CONC. 80.2	6
2. COMPONENT NITRIC OXID ANALYTICAL PRINCIPLE	E GMIS ANA	ALYZER MAKE-MO	TED MAKE MODEY CO.		MEAN TES Beckman 951A S/N 0101354		,mqc
FIRST ANALYSIS DATE	Chemiluminescence 12/02/02	cence LAST CALI			RATION DATE	12/08/02	
Z 0.0 R 873.4 R 874.6 Z 0.0	-	NC. 81.0 NC. 81.3	Z 0.0	R 872.0	C 708.5	12/10/02 CONC. 81.2	Ž.
Z 0.0 C 712.4 U/M mV	_	NC. 81.4	R 872.3 Z 0.0	Z 0.0 C 712.0	C 709.0 R 876.4	CONC. 81.3 CONC. 81.2	
••	WIEGH TEST ASS	SAY 81.2 ppm	\mathbf{U}/\mathbf{M} mV		MEAN TEST	TASSAV or a	- V

Values not valid below 150 psig. NOx values for reference use only.

THIS CYLINDER NO.

CC 92871

CERTIFIED CONCENTRATION

HAS BEEN CERTIFIED ACCORDING TO SECTION

EPA-600/R97/121

CARBON MONOXIDE

80.2 ppm

MEAN TEST ASSAY 81.2 ppm

OF TRACEABILITY PROTOCOL NO. PROCEDURE

Rev. 9/97

NITRIC OXIDE

81.2 ppm

CERTIFIED ACCURACY

% NIST TRACEABLE

NITROGEN

BALANCE

CYLINDER PRESSURE

2000 PSIG

NOx

CERTIFICATION DATE

81.8 ppm

EXPIRATION DATE

12/10/02 **13/10/0**4

排 沒 宝母

TERM 24 MONTHS

CERTIFIED BY

HELENA TRAN

CHRIS VU

IMPORTANT

Information contained herein has been prepared at your request by qualified experts within Praxeir Distribution, Inc. While we believe that the information is accurate to the information in the information in the information in the information is according to the information in the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the syst of

Praxair 5700 South Alameda Street Los Angeles, CA 90058 Telephone: (523) 585-2154 Facsimile: (714)542-6689

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

CUSTOMER

HORIZON AIR

P.O NUMBER

8354

REFERENCE STANDARD

COMPONENT

NIST SRM NO.

CYLINDER NO.

CONCENTRATION

CARBON MONOXIDE GMIS

VS.SRM#1678

CC 81679

51.1 PPM

NITRIC OXIDE GMIS

vsSRM#1683b CC 137710 48.0 ppm

ANALYZER READINGS

R=REFERENCE STANDARD

Z=ZERO GAS

C=GAS CANDIDATE

1. COMPONENT CARBON MONOXI	DE GMIS ANALYZ	ER MAKE-MODEL-	S/N Siemens Ultrama	Siemens Ultramat 5E S/N A12-729		
ANALYTICAL PRINCIPLE	NDIR		LAST CALIBI	RATION DATE	03/01/04	
FIRST ANALYSIS DATE	03/19/04		SECOND ANA	LYSIS DATE	03/26/04	
Z 0.0 R 50.2	C 50.2 CONC.	50.2 Z	0.0 R 51.1	C 50.2	CONC. 50.2	
R 50.2 Z 0.0	C 50.2 CONC.	50.2 R	51.1 Z 0.0	C 50.2	CONC. 50.2	
Z _{0.0} C _{50.2}	R 50.2 CONC.	50.2 Z	0.0 C 50.2	R 51.1	CONC. 50.2	
U/M ppm	MEAN TEST ASSAY	50.2 ppm U/M	¶ ppm		TASSAY 50.2 ppm	
2. COMPONENT NITRIC OXIDE	GMIS ANALYZ	ER MAKE-MODEL-	3.657	/N#0101354	50.0 pp.m	
ANALYTICAL PRINCIPLE	CHEMILUMINESCENCE		LAST CALIBR	= "	03/01/04	
FIRST ANALYSIS DATE	03/19/04		SECOND ANA	LYSIS DATE	03/26/04	
Z 0.0 R 458.5	C 477.0 CONC.	49.9 Z	0.0 R 457.5	C 477.0	CONC. 50.0	
R 458.7 Z 0.0	C 477.3 CONC.	49.9 R	157.4 Z 0.0	C 477.6	CONC. 50.1	
Z 0.0 C 477.5	R 459.4 CONC.	49.9 Z	0.0 C 476.8	R 457.5	CONC. 50.0	
U/M mv	MEAN TEST ASSAY	49.9 ppm U/N	-		T ASSAY 50.0 ppm	

NOx VALUE FOR REFERENCE USE ONLY. ALL VALUES NOT VALID BELOW 150 psig. FIRST CO ASSAY DONE AGAINST G.M.I.S.# CC 81679 (50.2 ppm CO/N2).

THIS CYLINDER NO.

CC 100039

CERTIFIED CONCENTRATION

HAS BEEN CERTIFIED ACCORDING TO SECTION

EPA-600/R97/121

CARBON MONOXIDE

50.2 ppm

OF TRACEABILITY PROTOCOL NO.

NITRIC OXIDE

50.0 ppm

PROCEDURE

NITROGEN

CERTIFIED ACCURACY ± 1

EXPIRATION DATE

% NIST TRACEABLE

BALANCE

CYLINDER PRESSURE

NOx

50.4 ppm

CERTIFICATION DATE

2000 PSIG

03/26/04

03/26/06

TERM 24 MONTHS

ANALYZED BY

CERTIFIED BY

IMPORTANT

Citym Information contained herein has been prepared at your request by busilitied experts within Fraxeir Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the provide political methods. the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the APPENDIX F - Strip Chart Data

APPENDIX G - Process Data

APPENDIX H - Permit to Operate

PERMIT TO CONSTRUCT

Application No.

374130

| CREEIVED

9/22/00

Granted as of 9/12/2000

LEGAL OWNER OR OPERATOR:

BRADLEY LANDFIEL AND RECYCLING CENTER 9081 TUIUNGA AVE P O BOX 39 SUN VALLEY, CA. 91352 ID 050310

Equipment Location:

9227 TUJUNGA AVE, SUN VALLEY, CA 91352-1542

Equipment Description:

LANDFILL GAS FLARING SYSTEM NO. 1 CONSISTING OF:

- 1. LIQUID KNOCKOUT/PARTICULATE REMOVAL VESSEL, JOHN ZINK, 2'-6" DIA. X 6'-0" H.
- 2. TWO BLOWERS, ONE STANDBY, LANDFILL GAS, EACH 200 HP, EACH 5,556 SCFM MAXIMUM FLOW RATE.
- FLARE NO. 1, JOHN ZINK, 13'-0" DIA. X 60'-0" H., WITH A MULTI-JET BURNER, A PROPANE GAS PILOT, ELECTRIC IGNITER, UV FLAME SENSOR, THERMOCOUPLE WITH TEMPERATURE INDICATOR AND RECORDER, AUTOMATIC SHUTDOWN AND ALARM SYSTEM, AUTOMATIC COMBUSTION AIR REGULATING SYSTEM, TEMPERATURE CONTROLLER AND FLAME ARRESTOR.

Conditions:

- 1) OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW.
- 2) THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES.
- 3) THIS EQUIPMENT SHALL BE OPERATED AND MAINTAINED BY PERSONNEL PROPERLY TRAINED IN ITS OPERATION.

ORIGINAL

PERMIT TO CONSTRUCT

370136

- THE START-UP FOR THIS FLARE SHALL NOT EXCEED 30 MINUTES. ANY OUTAGE THAT RESULTS IN THE SHUTDOWN OF THE FLARE OR GAS COMPRESSOR AND THE SUBSEQUENT START-UP OR RESTART OF THE FLARE OR THE COMPRESSOR IS NOT CONSIDERED A BREAKDOWN, PROVIDING NO RAW LANDFILL GAS EMISSIONS OCCUR.
- 5) THE FLARE SHALL BE EQUIPPED WITH A TEMPERATURE INDICATOR AND RECORDER WHICH MEASURES AND RECORDS THE GAS TEMPERATURE (IN DEGREES F) IN THE FLARE STACK. THE TEMPERATURE INDICATOR AND RECORDER SHALL OPERATE WHENEVER THE FLARE IS IN OPERATION.
- 6) WHENEVER THE FLARE IS IN OPERATION, A TEMPERATURE OF NOT LESS THAN 1500 DEGREES F, AS MEASURED BY THE TEMPERATURE INDICATOR SHALL BE MAINTAINED IN THE FLARE STACK EXCEPT DURING START-UP TIME FOR NOT MORE THAN 30 MINUTES. THE THERMOCOUPLE USED TO MEASURE THE TEMPERATURE SHALL BE ABOVE THE FLAME ZONE AND AT LEAST 3 FEET BELOW THE TOP OF THE FLARE SHROUD AND AT LEAST 0.6 SECONDS DOWNSTREAM OF THE BURNER.
- 7) THE FLARE SHALL BE EQUIPPED WITH A FAILURE ALARM WITH AN AUTOMATIC BLOWER AND LANDFILL GAS SUPPLY VALVE SHUT-OFF SYSTEM APPROVED BY THE AQMD, IN ORDER TO ISOLATE THE FLARE FROM THE LANDFILL GAS SUPPLY LINE, TO SHUT-OFF THE BLOWER AND TO NOTIFY A RESPONSIBLE PARTY OF THE FAILURE.
- 8) THE SHUT-OFF SAFETY SYSTEM SHALL BE TESTED ANNUALLY FOR PROPER OPERATION AND THE RESULTS RECORDED.
- 9) A FLOW INDICATING AND RECORDING DEVICE SHALL BE INSTALLED IN THE LANDFILL GAS SUPPLY LINE TO THE FLARE TO MEASURE AND RECORD THE QUANTITY OF LANDFILL GAS (IN SCFM) BEING BURNED.
- 10) ALL RECORDING DEVICES SHALL BE SYNCHRONIZED WITH RESPECT TO THE TIME OF DAY.
- 11) A PRESSURE DIFFERENTIAL INDICATOR SHALL BE MAINTAINED ACROSS THE FLAME ARRESTOR.
- 12) CONDENSATE INJECTED INTO THE FLARE SHALL NOT EXCEED 5 GPM.
- 13) THE TOTAL VOLUME OF LANDFILL GAS BURNED IN THE FLARE SHALL NOT EXCEED 5,556 STANDARD CUBIC FEET PER MINUTE.
- 14) EMISSIONS RESULTING FROM THE FLARE SHALL NOT EXCEED THE FOLLOWING: POLLUTANT LBS/HOUR

ROG	1.86
NOX (AS NO2)	10.0
SOX (AS SO2)	8.44
CO	33.3
PM10	3.0

ORIGINAL.

AQMID.

5

PERMIT TO CONSTRUCT

- EMISSIONS OF NOX FROM THE FLARE SHALL NOT EXCEED 0.06 LBS PER MILLION BTU OF HEAT.
- 16) A SUFFICIENT NUMBER OF, SIGHT GLASS WINDOWS SHALL BE INSTALLED IN THE FLARE TO ALLOW VISUAL INSPECTION OF THE FLAME AND THERMOCOUPLE LOCATION WITHIN THE FLARE AT ALL TIMES. ADEQUATE AND SAFE ACCESS SHALL BE PROVIDED FOR ALL PORTS UPON REQUEST BY AQMD PERSONNEL.
- A SET OF FOUR SAMPLING PORTS SHALL BE INSTALLED IN THE FLARE SHROUD AND LOCATED AT LEAST TWO FEET ABOVE THE FLAME ZONE AND AT LEAST THREE FEET BELOW THE TOP OF THE FLARE SHROUD. EACH PORT SHALL BE INSTALLED AT 90 DEGREES APART AND SHALL CONSIST OF FOUR INCH COUPLINGS. ADEQUATE AND SAFE ACCESS TO ALL TEST PORTS SHALL BE PROVIDED BY THE APPLICANT WITHIN 24 HOURS OF A REQUEST BY THE AQMD TO CONDUCT A TEST.
- 18) A SAMPLING PORT, OR OTHER METHOD APPROVED BY THE AQMD, SHALL BE INSTALLED AT THE INLET GAS LINE TO THE FLARE.
- 19) THE SKIN TEMPERATURE OF THE FLARE SHROUD WITHIN FOUR FEET OF ALL THE SOURCE TEST PORTS SHALL NOT EXCEED 250 DEGREES F. IF A HEAT SHIELD IS REQUIRED TO MEET THIS REQUIREMENT, ITS DESIGN SHALL BE APPROVED BY THE AQMD PRIOR TO CONSTRUCTION. THE HEAT SHIELD, IF REQUIRED TO MEET THE TEMPERATURE REQUIREMENT, SHALL BE IN PLACE WHENEVER A SOURCE TEST IS CONDUCTED BY THE AQMD.
- THE APPLICANT SHALL CONDUCT A SOURCE TEST ANNUALLY OR PER THE APPROVED 1150,1 COMPLIANCE PLAN. THE TEST SHALL BE PERFORMED IN ACCORDANCE WITH AQMD APPROVED TEST PROCEDURES. THE TEST SHALL INCLUDE, BUT MAY NOT BE LIMITED TO, A TEST OF THE FLARE FOR:
 - A. LANDFILL GAS COMPOSITION AND HEATING VALUE (INLET)
 - B. LANDFILL GAS FLOW RATE, SCFM (INLET)
 - C. TOTAL SULFUR COMPOUNDS AS H2S, PPMV (INLET)
 - D. TEMPERATURE, F (EXHAUSY)
 - E. FLOW RATE, DSCFM (EXHAUST)
 - F. NOX, LBS/HR AND LBS/MMBTU (EXHAUST)
 - G. SOX, LBS/HR (EXHAUST)
 - H. CO, LBS.HR (EXHAUST)
 - I. PM, LBS/HR AND GR/DSCF (EXHAUST)
 - J. TOTAL NON-METHANE ORGANICS, LBS/HR (INLET AND EXHAUST)
 - K. RULE 1150.1 TOXIC COMPOUNDS, PPMV (INLET AND EXHAUST)

THE SOURCE TEST SHALL BE CONDUCTED AT THE MAXIMUM FLOW RATE AVAILABLE AT THE TIME OF THE TEST BUT NOT TO EXCEED THE FLOW RATE ALLOWED BY THIS PERMIT.

21) ANY BREAKDOWN OR MALFUNCTION OF THE LANDFILL GAS FLARE RESULTING IN THE EMISSION OF RAW LANDFILL GAS SHALL BE REPORTED TO THE AQMD WITHIN ONE HOUR AFTER OCCURRENCE, AND IMMEDIATE REMEDIAL MEASURES SHALL BE UNDERTAKEN TO CORRECT THE PROBLEM AND PREVENT FURTHER EMISSIONS INTO THE ATMOSPHERE.

ORIGINAL

PERMIT TO CONSTRUCT

22) ALL RECORDS SHALL BE KEPT FOR A PERIOD OF AT LEAST TWO YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. A RECORD OF THE HOURS OF FLARE OPERATION SHALL BE INCLUDED.

Approval or denial of this application for permit to operate the above equipment will be made after an inspection to determine if the equipment has been constructed in accordance with the approved plans and specifications and if the equipment can be operated in compliance with all Rules of the South Coast Air Quality Management District.

Please notify TED KOWALCZYK at (909) 396-2592 when construction of equipment is complete.

5 .

This Permit to Construct is based on the plans, specifications, and data submitted as it pertains to the release of air contaminants and control measures to reduce air contaminants. No approval or opinion concerning safety and other factors in design, construction or operation of the equipment is expressed or implied.

This Permit to Construct shall serve as a temporary Permit to Operate provided the Executive Officer is given prior notice of such intent to operate.

This Permit to Construct will become invalid if the Permit to Operate is defined or if the application is cancelled. THIS PERMIT TO CONSTRUCT SHALL EXPIRE ONE YEAR FROM THE DATE OF ISSUANCE unless an extension is granted by the Executive Officer.

DORRIS M. BAILEY
Principal Office Assistant

DMB/tk01

ORIGINAL

Security Security